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Abstract

Post-hoc feature importance scores are one method for explain-
ing machine learning model outputs. Such explanations are
often used by ML practitioners as part of the model selection
process, where they select the best model for their task from
a set of candidate models. In this paper, we explore the ef-
fects of model uncertainty on the quality of these explanations.
Specifically, we develop an approach to quantitatively connect
the uncertainty in model predictions with explanation quality
in terms of (i) variance, (ii) complexity, (iii) monotonicity,
(iv) efficiency, and (v) faithfulness of the explanations. We
demonstrate that uncertainty in predictions among a set of
candidate models propagates to uncertainty in the feature im-
portance explanations, sometimes resulting in arbitrary expla-
nations for a given sample. We conduct experiments across a
range of datasets, model types, and feature importance expla-
nation techniques. Our results show that explanation quality
is much poorer for out-of-distribution samples compared to
in-distribution (i.e., uncertain vs. certain) samples. We also
analyze the effect of the number of candidate models and sub-
sample size on measures of feature importance. Overall, our
findings suggest that in the presence of uncertainty, current
feature importance explanation techniques are unreliable.

1 Introduction
Widespread research interest in explainable machine learning
(ML) has resulted in the development of algorithms that pro-
vide local, post-hoc explanations for black-box ML models
as feature importance scores (Gilpin et al., 2018). As these
techniques gained popularity, ML practitioners both in indus-
try and academia began to raise concerns over the reliability
of such explanations (Zhang et al., 2019; Lakkaraju, Arsov,
and Bastani, 2020). Aimed at fostering trust in the underlying
model, inconsistent explanations can undermine trust in ML
altogether (Zhang, Liao, and Bellamy, 2020).

Many have observed a welcome surge in interest and effort
towards explainable ML among industry practitioners, who
increasingly see explainability as being crucial for model
adoption (Bhatt et al., 2020). Indeed, in high-stakes analytics
and heavily-regulated domains, explanations can be a defin-
ing factor between adopting or discarding an otherwise highly
predictive model. Such pressure means that ML practitioners
have been keen to bring explainability criteria, often endorsed

by human domain experts, into model design considerations.
Such criteria can be used to select a model among equally
well performing candidates based on the feature attributions
the ML practitioners or domain experts find most “sensible.”

Existing methods for generating feature importance ex-
planations tend to explain a point estimate, which assumes
that only one suitable model exists. While Slack et al. (2020)
quantify uncertainty of a feature importance explanation for
a fixed model and fixed training set, we hypothesize that the
fixed model assumption is restrictive. In practice, there can be
many models that perform equally well on the same training
dataset (Breiman et al., 1984). From a Bayesian perspective,
there can be multiple models in a posterior that are equally
accurate but have drastically different explanations (Fisher,
Rudin, and Dominici, 2019).

Inspired by a real use case (see Section 2.1), we explore
the effects of uncertainty, induced by varying the training set
used, on the resulting feature importance explanations of the
model’s output. Our contributions are three-fold:

• We propose uncertainty attributions, a method for obtain-
ing uncertainty estimates for feature importance.

• We examine the effect of uncertainty on explanation qual-
ity in terms of the (i) variance, (ii) complexity, (iii) mono-
tonicity, (iv) efficiency, and (v) faithfulness.

• We explore how explanations of an ensemble are related
to the explanations of each model in the ensemble.

2 Background
2.1 Motivating Example
Grace is a Data Scientist working in the insurance industry.1
She is developing a propensity score model to predict the
likelihood of a claim event for motor insurance customers.
Her current prototype is based on a Random Forest classifier
with over 500 features to choose from, covering a broad range
of demographic indicators, vehicle properties, past history of
driving accidents and claims, as well as features engineered
from the telemetry data. She is considering reducing the fea-
ture space since she observes that, when ranked by native

1Identifying information has been removed from this use case.



impurity-based importance, her top 40 features are responsi-
ble for about 80% of the model’s predictive power. Now she
has multiple candidate Random Forest models, each trained
with a different subset of the original 500 features. All of
her models are achieving F-score of 0.7-0.75 and AUC of
0.95-0.97 in cross-validation, which is considered excellent
for her domain and data.

Satisfied with her models’ performance, Grace decides to
use TreeSHAP to generate local post-hoc explanations of
the trained models, and to run those explanations past her
team’s domain expert. Together they find that some of the
candidate models have relied heavily on features related to
past history of dangerous driving - which are only available
for existing customers - and hence have limited applicability
for new customers switching their insurance providers. They
further observe that, based on negative Shapley values, the
number of past driving accidents or near-misses inversely
correlates with the likelihood of the claim event for some
drivers – in other words, a few driving accidents in the past
are associated with lower risk of future claim than having no
driving accidents. Both Grace and the domain expert find this
association counter-intuitive and conclude that the features
related to past history of driving are not reliable. Instead of
investigating the probable predictive uncertainty in play for
the customers without the known history of driving, Grace
chooses to discard the candidate models that include these
features. Subsequently, Grace deploys into production an
alternative propensity score model that does not take into
account past history of driving, which has achieved equally
high cross-validation performance (F-score of 0.7 and AUC
of 0.95). However, once in use, Grace and her team notice
that the model classifies a higher proportion of new customers
as low risk, increasing the amount of manual assessment re-
quired by the underwriters. Although Grace suspects that
the model fails to detect new customers with high likelihood
of future claim events, she is unable to verify this since the
true labels are not available for several months. She has to
retire the model prematurely out of fear of reputational and
commercial damage. Even in low-stakes applications, the
practice of using feature importance explanations for model
selection risks consequential confirmation bias, especially
since it is unclear how uncertainty affects explanations. Rais-
ing awareness of such effects is a motivation for this work.

2.2 Feature Importance Explanations

Existing feature importance explanation techniques can be
broadly grouped into those that (i) allocate importance to
various input features using game theory (e.g., Shapley val-
ues (Lundberg and Lee, 2017)), (ii) find (and perhaps ma-
nipulate) the partial derivative of the output with respect to
an input feature (Baehrens et al., 2010; Smilkov et al., 2017;
Sundararajan, Taly, and Yan, 2017), (iii) redistribute rele-
vance in a backwards pass through a deep learning model
(Bach et al., 2015), or (iv) fit a linear surrogate model in
the neighborhood of a point of interest (Ribeiro, Singh, and
Guestrin, 2016). For a comprehensive review of techniques,
see Samek et al. (2020).

2.3 Shapley Value Explanations
A prominent class of feature importance explanation methods
is based on Shapley values from cooperative game theory
(Shapley, 1953). Shapley values are a method for distributing
the gains from a cooperative game to its players. In other
words, Shapley values denote the marginal contributions of
a player to the payoff of a coalitional game. Let T be the
number of players, and let v : 2T → R be the characteristic
function, where v(S) denotes the contribution of the players
in S ⊆ T . The Shapley value of player i’s contribution
(averaging player i’s marginal contributions to all possible
subsets S) is given by:

φi(v) =
1

|T |
∑

S⊆T\{i}

(
T − 1

S

)−1

(v(S ∪ {i})− v(S)).

Let Φ ∈ RT be a Shapley value contribution vector for all
players in the game, where φi(v) is the ith element of Φ.
The highlight of Shapley values is that they enjoy axiomatic
uniqueness guarantees (Shapley, 1953). In the feature im-
portance literature, Lundberg and Lee (2017) formulate a
similar problem to where the game’s payoff is the predictor’s
output y = f(x), the players are the d features of x, and the
φi values represent the contribution of xi to the game f(x).
Note that g(f, x)i = φi(v). Aas, Jullum, and Løland (2019)
define a characteristic function v where:

vx(S) = E
[
f(z)|z = x̄[x̄s=xs]

]
. (1)

For a subset of indices S ⊆ {1, 2, . . . d}, xs = {xi, i ∈ S}
denotes a sub-vector of input features that partitions the input,
x = xs ∪ xc. x̄[x̄s=xs] denotes an input where the features
in S are set to the observed values while the rest of the
features remain the reference baseline: x̄[x̄s=xs] = xs ∪ x̄c.
When |S| = d, x̄[x̄s=xs] = x. This characteristic function
captures the expected model output given when a subset of
features take on the value of some reference baseline. This is
used by Lundberg and Lee (2017), who show an equivalence
between Shapley values and surrogate methods, such as that
of Ribeiro, Singh, and Guestrin (2016).

2.4 Uncertainty Estimates
In the context of this manuscript, we define uncertainty as
the variance in predicted probabilities over an ensemble of
models from the same model class and with the same model
specification. Confidence is defined as the absolute difference
between the mean in predicted probabilities over that same
ensemble of models and 1

k , where k is the number of classes.
We posit that we can obtain uncertainty estimates for fea-

ture importance explanations by quantifying the variance in
importance scores across the each of the candidate models
that Grace found in Section 2.1. While Slack et al. (2020)
vary the perturbation region of a single Shapley value calcu-
lation to obtain uncertainty estimates with respect to a fixed
model, we consider feature importance across multiple mod-
els (effectively sampling from the posterior of models, given
the training samples) to get a mean and variance for a feature
importance score. Though we can apply this to any expla-
nation method, we propose our framework in the context of
Shapley value explanations.



3 Method: Uncertainty Attributions
In this section, we propose a method for obtaining uncertainty
estimates for (Shapley value) feature importance explanations
by examining feature importance scores averaged over multi-
ple models in the posterior. Note Equation 1 depends on f ,
since we fix the f to be the characteristic function. We can
explicitly write this dependence as v(S, f). Let the following
quantity be the model class feature importance:

φi(v)∗ =

∫
f∈F

P (f |D)φ(v, f)df, (2)

where φ(v, f) = 1
|T |
∑

S⊆T\{i}
(
T−1
S

)−1
(v(S ∪ {i}, f) −

v(S, f)) and P (f |D) denotes the prior over our model f
given dataset D. This quantity captures what the average
Shapley value of a data point is across all possible models in
some family of functions F . We can interpret these values
as the Shapley value of a feature under a selected model
class and a given dataset. We deem this Model Class Shapley.
Marginalizing over all possible models yields φi(v)∗. We
weight the Shapley value of each individual model by the
likelihood of the model itself. The above is intractable, but
we can approximate it via MC Sampling, as follows:

φ̃i(v) =
∑
f∈B

wfφ(v, f) = Ef∈B[φ(v, f)], (3)

where B is a finite set of models from F and wf captures
the likelihood of f . For example, if we assume each model
in B is equally likely, then wf = 1

|B| . We can also weight
each model by its accuracy on a validation set. If B = F ,
then φ̃i(v) = φi(v)∗. In addition to the Model Class Shapley
value, we can obtain uncertainty estimates by obtaining the
variance over the |B| Shapley values for feature xi:

si(B, x) = Vf∈B[φi(v, f)]. (4)

Note φ can be any feature importance method. We may
also want to know how much of the feature importance’s vari-
ance stems from the ensembling procedure or the explainer
itself. We now relate the Shapley values of the ensemble to
the Shapley value of each model itself.
Theorem 1. Let fe be an ensemble predictor defined as
fe(x) = 1

|B|
∑

f∈B f(x). When φ is the Shapley value and v
is defined per Equation 1, φ(v, fe) = Ef [φ(v, f)] .

A detailed proof can be found in the supplementary ma-
terial. Theorem 1 suggests we expect that the Shapley value
of an ensemble is equal to the average Shapley value of the
constituent models. This corroborates with our empirical find-
ings: based on experiments involving ensembles of 10 to 100
Multilayer Perceptrons, the two Shapley values are equal to
5 decimal places.

4 Experimental Setup
To study the effect of uncertainty on feature importance ex-
planations, we compare explanation quality between (i) out-
of-distribution (OOD) samples – those that the model is un-
certain about, and (ii) in-distribution samples – those that the
model is certain about (i.e., non-OOD). We deem a point as

being OOD if it is dispersed further than 1.5 times the in-
terquartile range (IQR) from lower (for confidence) or upper
(for uncertainty) quartile.

In total, we conducted over 168 hours of experiments have
on a 24-core Intel(R) Xeon(R) E5-2620 v3 @ 2.40GHz pro-
cessing unit with access to 60 GB RAM.

4.1 Datasets and Models
The experiments described in this work involve two
commonly-used ML classification models: Gradient Boosted
Trees (GBTs) and Multilayer Perceptrons (MLPs), trained
on three publicly-available tabular datasets: Adult census in-
come (Kohavi and Becker, 1996), COMPAS recidivism score
(ProPublica, 2017), and Wisconsin Breast Cancer diagnostic
(Kohavi and Becker, 1995). In total we have 6 model-dataset
pairs. We split each dataset into separate training and test
sets, train the classification models on the training set, and
compute feature attributions for each point in the test set.

For each model-dataset pair, we iteratively sample from
the posterior across initial states with a uniform prior. In each
iteration, only the model initialisations and the subset of train-
ing points used are permuted, while the model architecture,
training procedure, and evaluation parameters remain fixed.
This approach is equivalent to the simple averaging ensemble
from Lakshminarayanan, Pritzel, and Blundell (2017). The
resulting point estimates make up the distribution of model’s
predicted probabilities, where the expected value defines the
model’s confidence, and its variance defines the epistemic
uncertainty. The corresponding predictions on a test set (20%
of all samples) are subsequently explained using one of the
feature importance explanation techniques described in the
following subsection.

4.2 Explainers
For MLPs and their ensembles, the feature importance meth-
ods we use are (i) Integrated Gradients (Sundararajan, Taly,
and Yan, 2017), and (ii) SmoothGrad (Smilkov et al., 2017),
which is a noise-tunnel modification of Integrated Gradients.
We use the Captum implementation (CaptumAI, 2020) of
both of the above methods. For GBTs, we utilize (i) exact
Shapley importance scores, (ii) TreeSHAP (Lundberg et al.,
2020), and (iii) KernelSHAP (Lundberg and Lee, 2017) im-
plementations. In total, we examine 5 explainers.

4.3 Evaluation Criteria
We evaluate the effect of uncertainty on explanation quality
with respect to the following metrics:

• Variance (in feature importance scores): as defined by
Equation 4, averaged across the dataset. This may be re-
ported per feature or averaged over all features. A low
variance is desired.

• Complexity: the entropy of the probability distribution
made by the fractional contributions of each feature to
the magnitude of the attribution. A low complexity is de-
sired, with the simplest explanation being comprised of a
single feature attribution (Bhatt, Weller, and Moura, 2020).



Variance Complexity Monotonicity Efficiency Faithfulness

Exact Shapley non-OOD 0.07± 0.00 1.88± 0.22 0.88± 0.04 1.00± 0.00 0.00± 0.24
OOD 0.39± 0.00 1.96± 0.14 0.85± 0.05 1.00± 0.00 −0.01± 0.23

TreeSHAP non-OOD 0.08± 0.00 1.90± 0.20 0.88± 0.04 0.99± 0.09 0.00± 0.24
OOD 0.44± 0.00 1.96± 0.13 0.85± 0.04 0.97± 0.18 −0.01± 0.23

KernelSHAP non-OOD 0.19± 0.00 1.81± 0.23 0.89± 0.05 1.00± 0.00 0.00± 0.24
OOD 0.809± 0.00 1.85± 0.16 0.82± 0.05 1.00± 0.00 0.00± 0.23

Integrated Gradients non-OOD 20.00± 5.34 1.53± 0.22 0.96± 0.03 0.99± 0.10 0.00± 0.16
OOD 46.48± 18.61 1.55± 0.18 0.96± 0.03 1.00± 0.03 0.00± 0.13

Smoothgrad non-OOD 20.35± 0.52 1.92± 0.11 0.92± 0.04 1.00± 0.10 0.00± 0.13
OOD 19.97± 0.43 1.98± 0.06 0.92± 0.03 1.00± 0.09 −0.02± 0.10

Table 1: Comparison of the explanation quality on OOD and in-distribution samples of the Adult dataset in terms of the mean
and standard deviation of quality scores averaged across the ensemble of models. Values in bold indicate where the degradation
in quality was statistically significant (p<0.05).

10−3 Cohort Age Workclass Years in Education Marital Status Occupation Relationship Race Sex Capital Gain Capital Loss Hours per week Country

Exact Shapley non-OOD 0.142 0.052 0.082 0.115 0.095 0.161 0.015 0.024 0.042 0.023 0.086 0.021
OOD 0.851 0.390 0.538 0.319 0.509 0.464 0.165 0.103 0.177 0.267 0.641 0.293

TreeSHAP non-OOD 0.184 0.053 0.092 0.116 0.104 0.147 0.018 0.024 0.079 0.023 0.109 0.022
OOD 0.932 0.332 0.633 0.341 0.496 0.543 0.145 0.095 0.481 0.351 0.696 0.233

KernelSHAP non-OOD 0.241 0.068 0.178 0.299 0.251 0.604 0.017 0.026 0.099 0.062 0.148 0.248
OOD 1.303 0.579 1.014 0.865 1.165 1.620 0.202 0.163 0.333 0.485 1.011 0.868

Integrated Gradients non-OOD 16.554 8.758 26.606 37.233 25.819 55.443 5.467 15.611 7.590 12.597 14.390 13.965
OOD 47.485 37.694 100.807 34.555 81.930 96.448 7.780 27.302 28.773 15.651 56.416 22.881

SmoothGrad non-OOD 17.842 5.159 25.253 24.581 13.718 45.294 3.721 8.821 67.266 7.871 14.739 9.936
OOD 19.513 7.399 30.758 17.057 17.091 38.126 3.639 7.092 61.986 6.952 18.297 11.750

Table 2: Variance in feature attribution compared between OOD and in-distribution samples of the Adult dataset. Presented is
the mean of the Variance metric across the ensemble. Values are multiplied by 103 for clarity of presentation. Numbers in bold
indicate where the degradation in quality is statistically significant (p<0.05).

• Monotonicity: measures the changes in model performance
when incrementally adding each attribute in order of in-
creasing importance. As each feature is added, the perfor-
mance of the model should correspondingly increase (or
decrease, if that feature’s attribution is negative), thereby
resulting in monotonically increasing model performance
(Luss et al., 2019). Per Young (1985), monotonicity en-
sures that feature importance scores satisfy the Shapley
axioms of additivity and of null value (“dummy”).

• Efficiency: a property ensuring that the feature attributions
add up to the difference between model prediction and
a baseline (baseline is typically set to the global mean
of the training data). For exact Shapley values via the
KernelSHAP implementation and for Integrated Gradients,
the efficiency is expected to be equal to 1 by design. Also
known as “local accuracy” or “completeness”.

• Faithfulness: measures the correlation of the feature impor-
tance with a “ground truth,” commonly defined as differ-
ence in predicted value when a given feature is occluded
(Melis and Jaakkola, 2018; Yeh et al., 2019).

5 Experimental Results
Our results are consistent across all three datasets. In this sec-
tion, we describe our results for the Adult dataset. Additional
results can be found in the Supplementary Material.

5.1 Explanation Quality: Overall
Our experiments quantitatively compare and contrast the
quality of feature importance explanations under uncertainty
based on the 5 metrics in Section 4.3. The results averaged
over all features are shown in Table 1. We observed a statisti-
cally significant decrease in explanation quality across all 5
evaluation criteria (see Section 4.3) and 5 types of explainers
(see Section 4.2). As summarized in Table 1, Complexity and
Monotonicity degrade significantly for all explainers consid-
ered. For explainers which are not 100% efficient by design
(TreeSHAP) efficiency was also lower in OOD samples.

Our experimental results also confirm that exact Shapley
values and their KernelSHAP approximation are locally ac-
curate and fully meet the Efficiency axiom (i.e. scores equal
to 1 in both OOD and non-OOD samples), however, the In-
tegrated Gradients and SmoothGrad implementations show
surprising deviation from the Efficiency axiom. This discrep-
ancy could be due to the choice of the baseline, which is set
to the global mean of the training set, whilst the explanations
are computed for samples in the test set. With respect to Faith-
fulness, the differences between OOD and non-OOD samples
are less pronounced, since statistically significant (p<0.05)
degradation in explanation quality for points with low uncer-
tainty was only observed in exact Shapley, TreeSHAP, and
SmoothGrad explanations.

Overall, we find that feature importance explanations fail



Figure 1: Feature importance explanations of samples of the Adult dataset computed using Exact (red), Tree (black) and Kernel
(yellow) SHAP. Left: Most uncertain sample (OOD). Right: Least uncertain sample (non-OOD). Feature names are listed on the
left. Each feature is presented as a distribution of its Shapley values associated with the ensemble of 30 Gradient Boosted Trees.

Figure 2: Feature importance explanations of samples of the Adult dataset computed using Integrated Gradients (blue) and
SmoothGrad (green). Left: Most uncertain sample (OOD). Right: Least uncertain sample (non-OOD). Feature names are listed on
the left. Each feature is presented as a distribution of its explanations associated with the ensemble of 30 Multilayer Perceptrons.

on uncertain (OOD) points; specifically, evaluating the qual-
ity of explanations shows that both Shapley value explana-
tions and Integrated Gradient explanations for OOD data are
more complex, less monotone, and less faithful than explana-
tions for non-OOD (i.e., in-distribution) data.

5.2 Explanation Quality: Variance
We now focus on one facet of explanation quality, Variance.
In Table 2, we break down the explanation Variance for
OOD and non-OOD samples by feature in the Adult dataset.
Our experiments across a range of explainers support the
hypothesis that uncertainty in prediction (i.e., disagreement in
ensemble predictions) propagates to uncertainty in individual
feature importance scores, resulting in higher variance in



Figure 3: Left: As the subsample ratio, k
n , increases, our variance estimates converge. Right: Ensemble size, |B|, leads to

negligible improvement in the quality of our uncertainty estimates after 60 model ensembles.

feature importance scores across the ensemble.
As an illustrative example, Figure 1 shows two samples

in the Adult datset using a GBT model: the most uncertain
sample in the dataset (OOD), and the least uncertain sam-
ple in the dataset (non-OOD). We find that there is a larger
spread (i.e., variance) in feature importance scores attributed
to each of the 12 features for the OOD sample. In contrast, an
in-distribution sample – i.e. a point on which the ensemble
of models had agreement – yields low variance in the expla-
nations. These observations also hold for a different model
class (MLPs), and different explainers (Integrated Gradients
and SmoothGrad) as shown in Figure 2. In the supplementary
material, we cover an example of uncertainty attribution for
MNIST digits with feature importance (LeCun, 1998).

5.3 Hyperparameter Sensitivity
To obtain our uncertainty estimates, there are two hyper-
parameters that affect the quality of our estimate: |B| the
number of models we train and k points to sample from n
datapoints in D. We call k

n our subsample ratio that is the
training set size for a given model in our ensemble. In Fig-
ure 3 (Left), we see that ensemble size has negligible effect
on variance quality, beyond 60 ensembles for a particular fea-
ture (Education-Num from the Adult dataset): similar results
are reported in the supplementary material for other features.
In Figure 3 (Right), we see that as the subsample ratio in-
creases, variance estimates for a particular feature (again
Education-Num) converge: similar results are reported in the
supplementary material for other features. In Figure 4, we
relate subsample ratio and ensemble size in terms of the aver-
age variance in feature importance (per Equation 4) across
the Adult test set. Note that the F1 score for each ensemble,
where the subsample ratio was greater than 0.2, was around
0.68. In future work, we hope to formally relate ensemble
size, subsample ratio, and their effect on the converge of the
variance in feature importance, using the machinery estab-
lished by Politis, Romano, and Wolf (2001).

6 Discussion
We strongly suggest that existing feature importance tech-
niques should not be used on samples for which a model is

uncertain. We notice that feature importance scores for OOD
data perform poorly on multiple quantitative evaluation crite-
ria. We suggest that data practitioners convey the uncertainty
in explanations themselves as opposed to simply not using
post-hoc explanation techniques for points with high predic-
tive uncertainty. As such, we develop a scheme to calculate
uncertainty estimates for feature importance scores. These
uncertainty estimates can be used to detect OOD data and to
develop an uncertainty attribution, an alternative to feature
importance that captures where in input space an uncertainty
estimate lies. We report the variance of the feature impor-
tance explanations across the ensemble as the uncertainty
attribution. Instead of attributing importance to each feature,
uncertainty attributions denote which inputs are contributing
to a model’s uncertainty. Future work can leverage genera-
tive modelling to develop uncertainty explanations that not
only denote how much predictive uncertainty is associated
with each input feature but also provide an actionable change
for an input to achieve a specified model confidence, similar
to Booth et al. (2020) and Antorán et al. (2021). Moreover,
we hope future work can establish theory for uncertainty
attributions as an alternative for feature importance.

Figure 4: The interplay between ensemble size and subsample
ratio: subsample ratio has a stronger effect on the convergence
of our variance estimates.
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Appendix
We start by discussing uncertainty attributions. We then provide a Proof for Theorem 1. We conclude with additional results.

A Uncertainty Attributions
Uncertainty attributions, similar to feature importance, provide “saliency” maps that allow us to visualize where input space
uncertainty lies. We now compare feature importance with uncertainty attributions for certain and uncertain test points. Figure 5
shows examples of LIME and Kernel SHAP being applied to a BNN for high confidence MNIST test digits. We use the default
LIME hyperparameters for MNIST: the “quickshift” segmentation algorithm with kernel size 1, maximum distance 5 and a
ratio of 0.2. We plot the top 10 segments with weight greater than 0.01. We draw 1000 samples with both methods. Using the
same configuration, we generate LIME and SHAP explanations for some MNIST digits to which our BNN assigns predictive
entropy above a rejection threshold (that is, low confidence). The results are displayed in Figure 6. For feature importance in
MNIST digits, the reference is an entirely black image. Note that alternative versions of SHAP exist that incorporate information
about internal NN dynamics into explanations. However, they produce very noisy explanations when applied to our BNNs. We
conjecture that this high variance might be induced by disagreement among the multiple weight configurations from our BNNs.

ŷ = 0

Original

class: 0

LIME A

class: 7

LIME B

class: 2

LIME C

class: 0

SHAP A

class: 7

SHAP B

class: 2

SHAP C

ŷ = 1 class: 1 class: 3 class: 8 class: 1 class: 3 class: 8

ŷ = 2 class: 2 class: 3 class: 1 class: 2 class: 3 class: 1

ŷ = 3 class: 3 class: 5 class: 8 class: 3 class: 5 class: 8

ŷ = 4 class: 4 class: 9 class: 6 class: 4 class: 9 class: 6

ŷ = 5 class: 5 class: 0 class: 3 class: 5 class: 0 class: 3

ŷ = 6 class: 6 class: 5 class: 8 class: 6 class: 5 class: 8

ŷ = 7 class: 7 class: 9 class: 3 class: 7 class: 9 class: 3

ŷ = 8 class: 8 class: 3 class: 9 class: 8 class: 3 class: 9

ŷ = 9 class: 9 class: 3 class: 7 class: 9 class: 3 class: 7

Figure 5: High confidence MNIST test examples together with LIME and SHAP explanations for the top 3 predicted classes.
The model being investigated is a BNN. The highest probability class is denoted by ŷ.

When faced with an uncertain input, we posit that uncertainty attributions are more useful than feature importance. A positive
uncertainty attribution means that the addition of that feature will make our model more certain. A positive feature importance
means the presence of that feature serves as evidence towards a predicted class. A negative uncertainty attribution means that the
the absence of that feature will make the model more certain. A negative feature importance attribution means the absence of that
feature would serve as evidence for a particular prediction. While uncertainty attribution and feature importance solve similar
problems and both provide “saliency” maps, uncertainty attributions highlight regions that need to be added or removed to make
the input certain to a model. In some cases, we see that negative feature importance attribution aligns with negative uncertainty
attribution, suggesting the features which negatively contribute to the model’s predicted probability are the features that need to
be removed to increase the models’ certainty. The ability for uncertainty explanations to suggest the addition of unobserved
features (positive uncertainty attribution) is unique. The feature importance methods under consideration are difficult to retrofit
for uncertainty without a procedure like ours. They are unable to add features; they are limited to explaining the contribution
of existing features. This may suffice if the input contains all the information needed to make a prediction for a specific class;
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ŷ = 8 ŷ = 8 class: 8 class: 3 class: 5 class: 8 class: 3 class: 5

ŷ = 9 ŷ = 8 class: 9 class: 8 class: 3 class: 9 class: 8 class: 3

Figure 6: 10 MNIST test digits for which our BNN’s predictive variance is above the rejection threshold. A single CLUE example
is provided for each one (Antorán et al., 2021). The top scoring class is denoted by ŷ. LIME and SHAP explanations are provided
for the 3 most likely classes.

otherwise, this results in noisy, potentially meaningless, explanations. Generative-model based explanation methods, like FIDO,
can mitigate this, since they are flexible enough to deal with uncertain inputs.

B Proofs

Theorem 2. Let fe be an ensemble predictor defined as fe(x) = 1
|B|
∑

f∈B f(x). When φ is the Shapley value and v is defined
per Equation 1, φ(v, fe) = Ef [φ(v, f)]

Proof. Let fe be an ensemble predictor defined as fe(x) = 1
|B|
∑

f∈B f(x). We now relate the Shapley values of fe to the
Shapley value of each model itself.
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Therefore by leveraging the linearity of the Shapley value and the linearity of our ensemble, we show that the Shapley value of
an ensemble is equal to average Shapley value of the constituent models.

C Additional Results
C.1 Evaluating Feature Importance Explanations
Similar to Table 2 for the Adult dataset in the main paper, Table 3 and Table 4 contain the results of various explanation evaluation
criteria on the COMPAS and Cancer datasets respectively. We observe similar behavior to the Adult dataset: our variance metric
identifies OOD data well and also suggests that explanation quality suffers for OOD data. In Figure 10, we notice that low model
confidence leads to a degradation in quality of explanations. In particular, complexity of explanations decreases for samples on
which model confidence was high. We also find that explanation quality suffers for models with low model confidence (here
we define confidence as |0.5− f(x)| where f(x) ∈ [0, 1] is the probability of the most likely label in our binary classification
setting. In Figure 7 we notice that more confident examples has a sharper, more concentrated distribution of Shapley values. On
the other hand, for the least confident sample, we notice that for some features the distributions can vary drastically. Figure 8
shows similar results for gradient-based explanation methods. We hope that future work can leverage our explanation variance
metric to assist with model selection. We also hope that future work can study the connection between the variance in feature
importance and fairness desiderata: in Figure 9, we show that altering one feature for an individual can drastically change the
Shapley values for that feature alone; i.e., we decrease a person’s age and then the distribution of Shapley values for age changes,
while the distribution of Shapley values for the rest of the features is roughly the same.

Variance Complexity Monotonicity Efficiency Faithfulness

Exact Shapley non-OOD 0.00± 0.00 1.37± 0.23 0.95± 0.04 1.00± 0.00 −0.01± 0.22
OOD 0.01± 0.00 1.37± 0.21 0.92± 0.04 1.00± 0.00 −0.04± 0.13

TreeSHAP non-OOD 0.00± 0.00 1.38± 0.21 0.95± 0.04 0.98± 0.15 −0.01± 0.22
OOD 0.02± 0.00 1.38± 0.20 0.92± 0.04 0.86± 0.34 −0.04± 0.13

KernelSHAP non-OOD 0.00± 0.00 0.95± 0.25 0.95± 0.04 1.00± 0.00 −0.01± 0.21
OOD 0.01± 0.00 1.10± 0.23 0.92± 0.04 1.00± 0.00 −0.04± 0.13

Integrated Gradients non-OOD 1.56± 0.70 1.88± 0.18 0.83± 0.03 1.00± 0.06 0.00± 0.12
OOD 6.20± 5.77 1.94± 0.05 0.82± 0.02 1.00± 0.00 −0.11± 0.07

Smoothgrad non-OOD 0.81± 0.04 2.04± 0.14 0.78± 0.04 1.00± 0.06 0.00± 0.10
OOD 1.51± 0.08 2.06± 0.05 0.78± 0.04 1.00± 0.00 0.05± 0.03

Table 3: Comparison of the explanation quality on OOD and in-distribution samples of the COMPAS dataset. Presented are mean
and standard deviation of quality scores averaged across the ensemble of models. Values in bold indicate where the degradation
in quality was statistically significant (p<0.05).

C.2 Hyperparameter Sensitivity
We now report how the empirical variance of feature importance as a function of ensemble size (|B|) and subsample ratio ( kn ). In
Figure 12, we report heatmaps of the average variance of Integrated Gradient explanations across the test set for specific features,



Figure 7: Feature importance scores of the most confident (left) and least confident (right) samples of the Adult dataset computed
using Exact (red), Tree (black) and Kernel (yellow) SHAP. Each feature is presented as a distribution of its Shapley values
associated with the ensemble of 30 Gradient Boosted Trees.

Figure 8: Feature attributions of the most confident (left) and least confident (right) samples of the Adult dataset computed using
Integrated Gradients (blue) and SmoothGrad (green). Each feature is presented as a distribution of its explanations associated
with the ensemble of 30 Multilayer Perceptrons.



(a) Adult Dataset: Age Differences

(b) Adult Dataset: Race Differences

Figure 9: On the top, we have two individuals with similar feature values except for their age; the Shapley distribution indicates
that Age is more important for older individuals. On the bottom, we have two individuals with similar feature values except for
their race; the Shapley distribution indicates the change in race affects the Shapley value for race and for occupation, while most
other features are distributed similarly.



Variance Complexity Monotonicity Efficiency
Faithfulness

TreeSHAP non-OOD 0.00± 0.00 2.68± 0.08 0.99± 0.01 1.00± 0.00 −0.03± 0.13
OOD 0.01± 0.00 2.69± 0.06 0.99± 0.01 0.97± 0.18 −0.07± 0.13

KernelSHAP non-OOD 0.00± 0.00 2.47± 0.16 1.00± 0.01 1.00± 0.00 −0.03± 0.13
OOD 0.01± 0.00 2.50± 0.19 0.99± 0.01 1.00± 0.00 −0.05± 0.11

Integrated Gradients non-OOD 0.01± 0.00 2.85± 0.10 1.00± 0.00 1.00± 0.00 −0.02± 0.16
OOD 0.87± 0.60 2.88± 0.10 1.00± 0.00 1.00± 0.00 0.01± 0.17

Smoothgrad non-OOD 0.22± 0.02 2.83± 0.05 1.00± 0.01 0.93± 0.25 −0.02± 0.11
OOD 0.55± 0.04 2.84± 0.05 0.99± 0.01 0.95± 0.23 0.03± 0.16

Table 4: Comparison of the explanation quality on OOD and in-distribution samples of the Cancer dataset. Presented are mean
and standard deviation of quality scores averaged across the ensemble of models. Values in bold indicate where the degradation
in quality was statistically significant (p<0.05).

(a) Adult dataset (b) COMPAS dataset

Figure 10: Complexity of explanations (Exact Shapley values) by predictive confidence of a Gradient Boosted Tree ensemble.
For this binary classification task, both correctly (in orange) and incorrectly (in blue) classified samples are displayed.

as we vary the hyperparameters of interest. In Figure 13, we report boxplots of how average variance for Integrated Gradients
changes with ensemble size. In Figure 14, we report boxplots of how average variance for Integrated Gradients changes with the
subsample ratio. For completeness, we include analysis of how varying ensemble size and subsample ratio affect the models’ F1
score.



Figure 11: We report how the models’ F1 scores vary with ensemble size and subsample ratio.



Figure 12: Average variance in feature importance scores across the Adult test set reported as a function of ensemble size and
subsample ratio. Notice that subsample ratio seems to matter more for the variance estimates to converge. Ensemble size does
not need to be too large for variance estimates for most features to converge.



Figure 13: Average variance in feature importance scores across the Adult test set reported as a function of ensemble size. By 50
model ensembles, variance estimates for most features seem to converge. Here we have set the subsample ratio to 1

2 .



Figure 14: Average variance in feature importance scores across the Adult test set reported as a function of subsample ratio. For
most features, variance estimates see to converge by the time the subsample ratio passes 1

2 ; however, Martial Status and Capital
Loss have erratic behavior likely due to outliers appearing in the subsampling procedure. Note here we use 100 models in our
ensemble.
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