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Transparency

Model Stakeholder

Human-Machine
Team

means providing stakeholders with

relevant information about how a model works

B, Xiang, Sharma, Weller, Taly, Jia, Ghosh, Puri, Moura, Eckersley. Explainable Machine Learning in Deployment. ACM FAccT. 2020.
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B, Shams. Trust in Artificial Intelligence: Clinicians Are Essential. Chapter 10 in Healthcare Information Technology for Cardiovascular Medicine. 2021.
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Model Stakeholder

Algorithmic
Transparency

Explainability

means providing insight into a

model’s behavior for specitic datapoint(s)

B, Xiang, Sharma, Weller, Taly, Jia, Ghosh, Puri, Moura, Eckersley. Explainable Machine Learning in Deployment. ACM FAccT. 2020.
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Model Stakeholder
Explainability

A PARTNERSHIP ON Al

understand how explainability methods are used in practice

30min to 2hr semi-structured interviews with 50
individuals from 30 organizations

B, Xiang, Sharma, Weller, Taly, Jia, Ghosh, Puri, Moura, Eckersley. Explainable Machine Learning in Deployment. ACM FAccT. 2020.



Chapter 3

Popular Explanation Styles

Feature Importance Sample Importance Counterfactuals

B, Xiang, Sharma, Weller, Taly, Jia, Ghosh, Puri, Moura, Eckersley. Explainable Machine Learning in Deployment. ACM FAccT. 2020.



Chapter 3

Common Explanation Stakeholders

e &

Executives Engineers End Users Regulators

B, Xiang, Sharma, Weller, Taly, Jia, Ghosh, Puri, Moura, Eckersley. Explainable Machine Learning in Deployment. ACM FAccT. 2020.



Chapter 3

Findings

1.Explainability is used for debugging internally

2.Goals of explainability are not clearly defined
within organizations

3.Technical limitations make explainability hard
to deploy in real-time

B, Xiang, Sharma, Weller, Taly, Jia, Ghosh, Puri, Moura, Eckersley. Explainable Machine Learning in Deployment. ACM FAccT. 2020.



Model Stakeholder
Explainability

@
N PARTNERSHIP ON Al

LEVERHULME CENTRE FOR THE
FUTURE OF INTELLIGENCE

<|||I

facilitate an inter-stakeholder conversation around explainability

Community engagement and context consideration are
important factors in deploying explainability thoughttully

B, Andrus, Xiang, Weller. Machine Learning Explainability for External Stakeholders. ICML WHI. 2020.



Chapter 3

Community Engagement

1. In which context will this explanation be used?

2. How should the explanation be evaluated? Both quantitatively and
qualitatively...

3. Can we prevent data misuse and preferential treatment by involving
affected groups in the development process?

4. Can we educate stakeholders regarding the functionalities and limitations
of explainable machine learning?

B, Andrus, Xiang, Weller. Machine Learning Explainability for External Stakeholders. ICML WHI. 2020.



Chapter 3

Deploying Explainability

. How does uncertainty in the model's predictions and explanation

technique affect the resulting explanations?
How can stakeholders interact with the resulting explanations?

How, if at all, will stakeholder behavior change as a result of the
explanation shown?

Over time, how will the model and explanations adapt to changes in
stakeholder behavior?

B, Andrus, Xiang, Weller. Machine Learning Explainability for External Stakeholders. ICML WHI. 2020.
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Policy Maker . . .
’ Assure model fairness via explanations

Model A Model B

Explanations
of Unfairness

ECAI 2020
AAAl 2022a
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Dimanov, B, Jamnik, Weller. You shouldn't trust me: Learning models which conceal unfairness from multiple explanation methods. ECAI. 2020.



Policy Maker

Explanations
of Unfairness

ECAI 2020
AAAl 2022a
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Heo, Joo, Moon. Fooling Neural Network interpretations via adversarial model manipulation. NeurlPS. 2019.
Dimanov, B, Jamnik, Weller. You shouldn't trust me: Learning models which conceal unfairness from multiple explanation methods. ECAI. 2020.




Chapter 4
Data Scientist DIVINE: DIVerse INfluEntial Training Points

‘ Question: "Which training points are important to a specific prediction?”

C)‘
At A%y

Explanation &
Evaluation |
o
.C
—— Decision Boundary
/\ Prototypes
Influence Functions
z Data Shapley
O DIVINE
Formulation: Can we find a set of m training points that are not only influential to
the model but also diverse in input space?
l. Measuring Influence l. Measuring Diversity lll. Optimizing for Both
_ N . Submodular R(S I(S) + yR(S
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B, Chien, Zatar, Weller. DIVINE: DIVerse INfluEntial Training Points. Under Review. 2022.



Chapter 4
Data Scientist DIVINE: DIVerse INfluEntial Training Points

m=5

Influence Z(S)

Maximize Influence
Sacrifice 10% Influence
Maximize Average Pairwise Distance

Explanation
Evaluation

Diversity Rsr(S)
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B, Chien, Zatar, Weller. DIVINE: DIVerse INfluEntial Training Points. Under Review. 2022.



Chapter 4
Data Scientist DIVINE: DIVerse INfluEntial Training Points

. Task Simulatability: Users how well a user can reason about an entire
model given an explanation.

We show sets of points to a user and ask them to draw a decision

boundary for each. Users decide upon a decision boundary by

Explanation selecting two endpoints, which we then translate into a line.
Evaluation
iy
© o
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Upon calculating the cosine similarity between the true and user-drawn decision
boundaries, we find that DIVINE points were considerably more helpful to users.

B, Chien, Zatar, Weller. DIVINE: DIVerse INfluEntial Training Points. Under Review. 2022.



Model Stakeholder

Weller. Transparency: Motivations and Challenges. Chapter 2 in Explainable Al: Interpreting, Explaining and Visualizing Deep Learning. 2019
Bucinca, Malaya, Gajos. To Trust or to Think: Cognitive Forcing Functions Can Reduce Overreliance on Al in Al-assisted Decision-making. CSCW. 2021.
Zerilli, B, Weller. How transparency modulates trust in artificial intelligence. Patterns. 2022.

Explainability sl

Manipulation

Overreliance



Chapter 2

Loafing Appreciation Aversion A Opposition

Stakeholder aligns all Stakeholder aligns most o Stakeholder aligns few Stakeholder aligns no
decisions with model decisions with model Vlgllance decisions with model decisions with model

Overtrust Distrust

Dietvorst, Simmons, Massey. Algorithm aversion: People Erroneously Avoid Algorithms after Seeing Them Err. Journal of Experimental Psychology. 2015.
Logg, Minson, Moore. Algorithm appreciation: People prefer algorithmic to human judgment. Organizational Behavior and Human Decision Processes. 2019.
Zerilli, B, Weller. How transparency modulates trust in artificial intelligence. Patterns. 2022.



Stakeholder aligns all Stakeholder aligns most Stakeholder aligns few Stakeholder aligns no
decisions with model decisions with model Vigilance decisions with model decisions with model

Explainability

Uncertainty

Bucinca, Malaya, Gajos. To Trust or to Think: Cognitive Forcing Functions Can Reduce Overreliance on Al in Al-assisted Decision-making. CSCW. 2021.
Zerilli, B, Weller. How transparency modulates trust in artificial intelligence. Patterns. 2022.



Model Algorithmic Stakeholder
Transparency

Explainability

Uncertainty

B, Antoran, Zhang, Liao, Sattigeri, Fogliato, et al. Uncertainty as a Form of Transparency: Measuring, Communicating, and Using Uncertainty. ACM AIES. 2021.
Zerilli, B, Weller. How transparency modulates trust in artificial intelligence. Patterns. 2022.



Model Stakeholder
Uncertainty

AIES 2021
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B, Antoran, Zhang, Liao, Sattigeri, Fogliato, et al. Uncertainty as a Form of Transparency: Measuring, Communicating, and Using Uncertainty. ACM AIES. 2021.
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Chapter 4

Risk Executive CLUE: Counterfactual Latent Uncertainty Explanations
‘ Question: "Where in my input does uncertainty about my outcome lie?”
; Probabilistic E Uncertainty E Explanation
E Model ' Quantification .
: E " Integrated Gradients,
: : LIME, SHAP, etc.
Explanations @ ?% ;é&( ' cartain
of Uncertainty ' ™ Prediction? .
Input : y "‘QL : ' ]
: ORO -
CLUE A

Formulation: What is the smallest change we need to make to an input, while
staying in-distribution, such that our model produces more certain predictions?

Sensitivity CLUE
| ] “ ﬂo(xlzcws)
e i
=N VxH(y I XO) d’ = e
| =™ | L) Z.
H(y|x,) = 1.77 H(y|x,,,) = 0.12 H(y |x¢) = 1.77 —» -1-V,L(z) H(y | Xpy ) = 0.19

Antoran, B, Adel, Weller, Hernandez-Lobato. Getting a CLUE: A Method for Explaining Uncertainty Estimates. ICLR. 2021.
Ley, B, Weller. Diverse and Amortised Counterfactual Explanations for Uncertainty Estimates. AAAI. 2022.



Chapter 4
Risk Executive CLUE: Counterfactual Latent Uncertainty Explanations

‘ Original CLUE ACLUE
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Antoran, B, Adel, Weller, Hernandez-Lobato. Getting a CLUE: A Method for Explaining Uncertainty Estimates. ICLR. 2021.
Ley, B, Weller. Diverse and Amortised Counterfactual Explanations for Uncertainty Estimates. AAAI. 2022.



Chapter 4

Risk Executive

CLUE: Counterfactual Latent Uncertainty Explanations

Forward Simulation: Users are shown context examples and are

tasked with predicting model behavior on new datapoint.

Uncertain Certain ?

Age | Lessthan25 Age Less than 25 Age | Lessthan25

Race Caucasian Race | African-American Race Hispanic

| . Sex Male Sex Male Sex Male

EX p an atl Ons Current Charge | Misdemeanour Current Charge Misdemeanour Current Charge | Misdemeanour
Of U ncerta | ﬂty Reoffended Before Yes | Reoffended Before No | Reoffended Before No
Prior Convictions 1 Prior Convictions 0 Prior Convictions 0

Days Served 0 Days Served 0 Days Served 0

<> Certain

O Uncertain

Entire
Test Set

Test Set w/o
certain
points

O
5R
O

&

Pilot Procedure

1) Participant A selects a
test point at random
from the test set

2) Participant A pairs [

- = = > the selected point with
an uncertain context

point

Test Point

40.0

2.9

White

Female

Combined | LSAT COMPAS
CLUE 82.22 83.33 81.11
Human CLUE 62.22 61.11 63.33
Random 61.67 62.22 61.11
Local Sensitivity 52.78 56.67 48.89

CLUE outperforms

Main Survey

41.0

3.7

White

Female

4) Participants identify
the certainty of the test
point given the two
context points .

®
yA

g

other approaches with statistical significance.
(Using Nemenyi test for average ranks across test questions)

Certain Context Point
LSAT

40.1

3.3

White

’

’ Sex | Female

3) Generate certain
context point based on
method being evaluated

®—Random

Antoran, B, Adel, Weller, Hernandez-Lobato. Getting a CLUE: A Method for Explaining Uncertainty Estimates. ICLR. 2021.
Ley, B, Weller. Diverse and Amortised Counterfactual Explanations for Uncertainty Estimates. AAAI. 2022.




Radiologist

Prediction
Sets

IJCAI 2022

Generate prediction sets for experts

Question: “What other outcomes are probable?”

' > Concussion Top =

R Classifier
Most Probable Label

| > {Concussion, Tumour} Set Valued

Classifier
V_J
95 % Confidence Set

PredictionSet [ (x)={ye %|P(y|x) > 7}
Conformal Prediction [FNR < a = P(y & F(x)) <a

Risk Controlling Prediction Sets P( F[L(y, I'(x))] < Ot) >1-=95
W—_——’

Risk
Vovk, Gammerman, Shafer. Algorithms in the Real World. 2005

Bates, Angelopoulos, Lei, Malik, Jordan. Distribution-Free, Risk-Controlling Prediction Sets. Journal of the ACM. 202.
Babbar, B, Weller. On the Utility of Prediction Sets in Human-Al Teams. |[JCAI. 2022.




Radiologist L
. Generate prediction sets for experts

Question: Do prediction sets improve human-machine team performance?
A CP Scheme!
. For CIFAR-100: /
Prediction . .
. 1. Prediction sets are perceived Metric Top-1 RAPS p value Effect Size

to be more useful / Accuracy 0.76 + 005 0.76 005 0,999 0.000

|IJCAI 2022 2. Users trust prediction sets Reported Utility 5.43 + 069 6.94 +0.69 @ 1.160

Reported Confidence 7.21 +055 7.88 £0290  (0.082 0.674

more than Top-1 classifierS\/ Reported Trust in Model 5.87 081 8.00 +0.69 (< 0.001 1.487

TT——

Observation: Some prediction sets can be quite large, rendering them useless to experts!

Predict Prediction Set
ﬂ(xtest) =0 F(xtest)

|dea: Learn a deferral policy n(x) € {0,1} and

.y . . Test Exampl
reduce prediction set size on remaining examples est Example x,

Defer Expert Prediction
ﬁ- (xtest) =1 h(xtest)

Babbar, B, Weller. On the Utility of Prediction Sets in Human-Al Teams. |[JCAI. 2022.




Radiologist

. Generate prediction sets for experts
Using our deferral plus prediction set
Metric D-RAPS RAPS pvalue Effect Size : ,
Accuracy 0.76 £ 008 0.67 +005 0.003 0.832 SCheme’ we achieve:
o Reported Utility 7.93 +039 6.32 +060 < 0.001 1.138 1. ig ner perceived uti|ity /
Prediction Reported Confidence 7.31 020 7.28 +029  0.862 0.046 . J
Sets Reported Trust in Model 8.00 +045 6.87 061 0.006 0.754 2. igner reported trust
3. Higher team accuracy \/
IJCAI 2022
Model Uncertain — Humans Confident Model Confident — Humans Uncertain

*
Model ;.___ N Model ] N '_
Human |} i S Human . - n _ u
Class Class Class Class | Class " Class
D-RAPS Defer Defer Defer D-RAPS {Deer} {Bird, Cat} {Airplane}
RAPS {Airplane, Ship, Automobile} {Horse, Dog, Cat} {Bird, Horse, Deer} RAPS {Deer, Horse} {Bird, Airplane, Cat} { Airplane, Ship}

We also (A) prove that set size is reduced for the non-deferred examples and
(B) optimize for additional set properties (e.g., sets with similar labels).

Babbar, B, Weller. On the Utility of Prediction Sets in Human-Al Teams. |[JCAI. 2022.



Some Takeaways Thus Far

Algorithmic transparency is important but difficult
® Cxplanations are desirable in theory but are hard to operationalize

e |Uncertainty can be treated as a form of transparency that can be used to
alter stakeholder interaction with model

¢ \We need to consider the context of transparency carefully to improve
outcomes of human-machine teams

Convening is powertul tool to motivate technical and socio-technical research



Transparency

Model Stakeholder

Human-Machine
Team

Babbar, B, Weller. On the Utility of Prediction Sets in Human-Al Teams. |lJCAI. 2022.
Chen*, B*, Heidari, Weller, Talwalkar. Perspectives on Incorporating Expert Feedback into Model Updates. Patterns. 2023.



Prediction Set
Model Stakeholder

Human-Machine
Team

Deferral Policy

Babbar, B, Weller. On the Utility of Prediction Sets in Human-Al Teams. |[JCAI. 2022.



Values
Preferences

Expectations

Model 299 Stakeholder

Chen*, B*, Heidari, Weller, Talwalkar. Perspectives on Incorporating Expert Feedback into Model Updates. Patterns. 2023.



Model Stakeholder
Feedback

Observation Domain

Hertwig, Erev. The description-experience gap in risky choice. Trends in Cognitive Science. 2009.
Chen*, B*, Heidari, Weller, Talwalkar. Perspectives on Incorporating Expert Feedback into Model Updates. Patterns. 2023.



Model Stakeholder

Dataset Loss Parameter

Update

Chen*, B*, Heidari, Weller, Talwalkar. Perspectives on Incorporating Expert Feedback into Model Updates. Patterns. 2023.



Feedback-Update Taxonomy

Model Stakeholder
Feedback

Observation Domain

Dataset Loss Parameter

Update

Chen*, B*, Heidari, Weller, Talwalkar. Perspectives on Incorporating Expert Feedback into Model Updates. Patterns. 2023.



Socio-technical Relationship

Model Appropriate Access Stakeholder

Chen*, B*, Heidari, Weller, Talwalkar. Perspectives on Incorporating Expert Feedback into Model Updates. Patterns. Cell Press 2023.

B*, Chen*, Collins, P. Kamalaruban, Kallina, Weller, Talwalkar. Learning Personalized Decision Support Policies. Under Review. 2023.



Veil of Selectivity

Model Stakeholder

Model Performance Domain Expertise

B*, Chen*, Collins, P. Kamalaruban, Kallina, Weller, Talwalkar. Learning Personalized Decision Support Policies. Under Review. 2023.



Business LLC

Access: 100% Alice

o
Model .

Bob

Access: 50%

B*, Chen*, Collins, P. Kamalaruban, Kallina, Weller, Talwalkar. Learning Personalized Decision Support Policies. Under Review. 2023.



Business LLC

Alice

Model Appropriate Access .

Cost
Expertise Bob
Internal Policy ‘

External Regulation

B*, Chen*, Collins, P. Kamalaruban, Kallina, Weller, Talwalkar. Learning Personalized Decision Support Policies. Under Review. 2023.



Chapter 5

Decision Maker Learning Personalized Decision Support Policies
‘ Question: “When is it appropriate to provide decision support (e.g. ML model
predictions) to a specific decision-maker?”
Forms of support Decision-maker
a; = None

Personalize

Ali — ~
Tty we(xt) = a Yt = hAlice(xt’ a2)

Access

Alice
— 4, = ML Prediction — —_ Update ;|
using £(5, ;)
a, = LLM Summary °W..
Xt 3
Formulation: For an unseen decision-maker, which available form of decision
support would improve their decision outcome performance the most?
Set Up Core Idea of THREAD
We select a form of support a, € A using a decision support policy z,: X - A(A) Learn policy r, using a exisiting contextual bandits techniques
The decision-maker makes the final prediction: y, = h(x, a,) Include cost of g, in the objective

Performance differs under each form of support: r, (x; 1) = E, [£(y, h(x, A))]

B*, Chen*, Collins, P. Kamalaruban, Kallina, Weller, Talwalkar. Learning Personalized Decision Support Policies. Under Review. 2023.



Chapter 5

Learning Personalized Decision Support Policies

Decision Maker

Expertise Profiles
Invariant: 74 (X; h) ~ 7 (X h),Vj € |N]
Varying: r (X h) < 7 (X h) and 7, (X3 h) < 7, (X3 h)
Strictly Better: 7, (X h) < 7y (X5 h),Vj e |N]

Personalize

Access CIFART0 Task: 3 forms of support (None, Model, or Expert Consensus) and 5 classes
MMLU Task: 2 forms of support (None or LLM) and 4 categories
Excess loss over optimal loss
CIFAR MMLU
Algorithm Invariant Strictly Better Varying
Algorithm Invariant Strictly Better Varying
H-ONLY 0.0040.01  0.09 + 0.08 0.50 & 0.06

H-MODEL 0.00 & 0.01 0.22 4+ 0.19 0.35 + 0.05 H-ONLY 0.01+0.01  0.18x0.17 0.22 = 0.12
H-CONSENSUS ~ 0.00 £0.01  0.23 +0.13 0.27 + 0.08 H-LLM 001x001 018x+021  0.12x0.17
Population 0.004+0.02  0.18 +0.08 0.15 + 0.03 POPUIa;tIO% 0.00+0.02  0.19 i 0.07 0.1 i O-OZ
THREAD-LinUCB  0.0040.01  0.17+0.05 / 0.19 4 0.05 TI%EAEIX;III{IENB 8-8‘1’ i 8-81 3-3; i 3%33 g-g; i g-%g

THREAD-KNN  0.00 + 0.01 READ- ' ' ' ' ' '

J.06 = 0.01 0.08 = 0.C

learn their policy online

It a decision-maker benetfits from having support some of the time, we can

B*, Chen*, Collins, P. Kamalaruban, Kallina, Weller, Talwalkar. Learning Personalized Decision Support Policies. Under Review. 2023.



Chapter 5
Decision Maker Learning Personalized Decision Support Policies

Interactive Evaluation: Users interact with our tool, Modiste, which
uses THREAD to learn when users require support online.

What is Depicted in This Image? Your Score: What is Depicted in This Image? L0 What is Depicted in This Image? Your Score:
3 out of 10 correct 15 out of 27 correct 9 out of 17 correct

56% 53%

0,
30% Please decide which category is shown in the image below. Please decide which category is shown in the image below.

Please decide which category is shown in the image below.

o s B ~

Al Model Prediction EXPERTS' OPINIONS
1.0
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Access
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o."
)
|
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Chapter 5
Decision Maker Learning Personalized Decision Support Policies

‘ Interactive Evaluation: Users interact with our tool, Modiste, which
uses THREAD to learn when users require support online.

Similar Performance, Cheaper Cost!!!
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Additional Takeaways

Personalized access to decision support (e.g., ML models) can be learned and
improve decision-maker performance

® Forms of decision support may be offline (e.g., expert consensus)

® Sclectivity is just one way to operationalize stakeholder-model interaction
and to preempt aversive behavior

e Testbeds (ala Modiste) can validate online learning algorithms in practice
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Future Directions

® Show selective access to models helps in deployed settings: this may mean selective
transparency based on stakeholder expertise

® Study the socio-technical nature and societal implications of providing model
predictions and subsequent transparency in specific contexts

® | everage stronger priors in learning when decision-makers should be and want to be
supported
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Trustworthy Machine Learning

From Algorithmic Transparency to
Decision Support

Thank you for listening! Questions?

@umangsbhatt
umangbhatt@nyu.edu
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