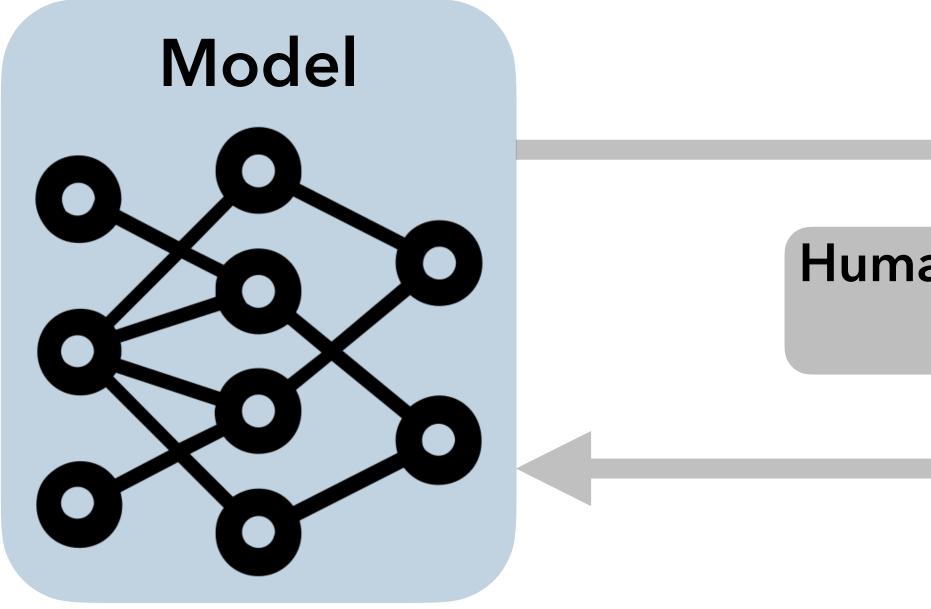
Algorithmic Transparency in Machine Learning

Umang Bhatt

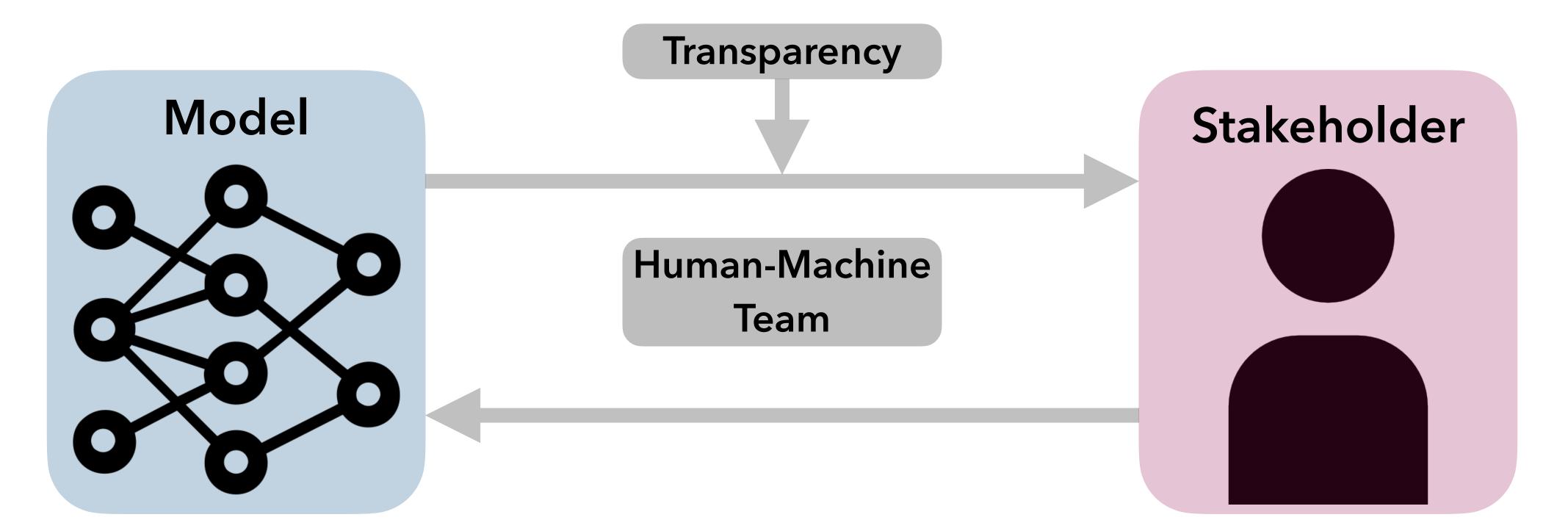
PhD Candidate, University of Cambridge Enrichment Student, The Alan Turing Institute Student Fellow, Leverhulme Center for the Future of Intelligence **Research Fellow**, Harvard Center for Research on Computation and Society

@umangsbhatt usb20@cam.ac.uk

CFI LEVERHULME CENTRE FOR THE FUTURE OF INTELLIGENCE

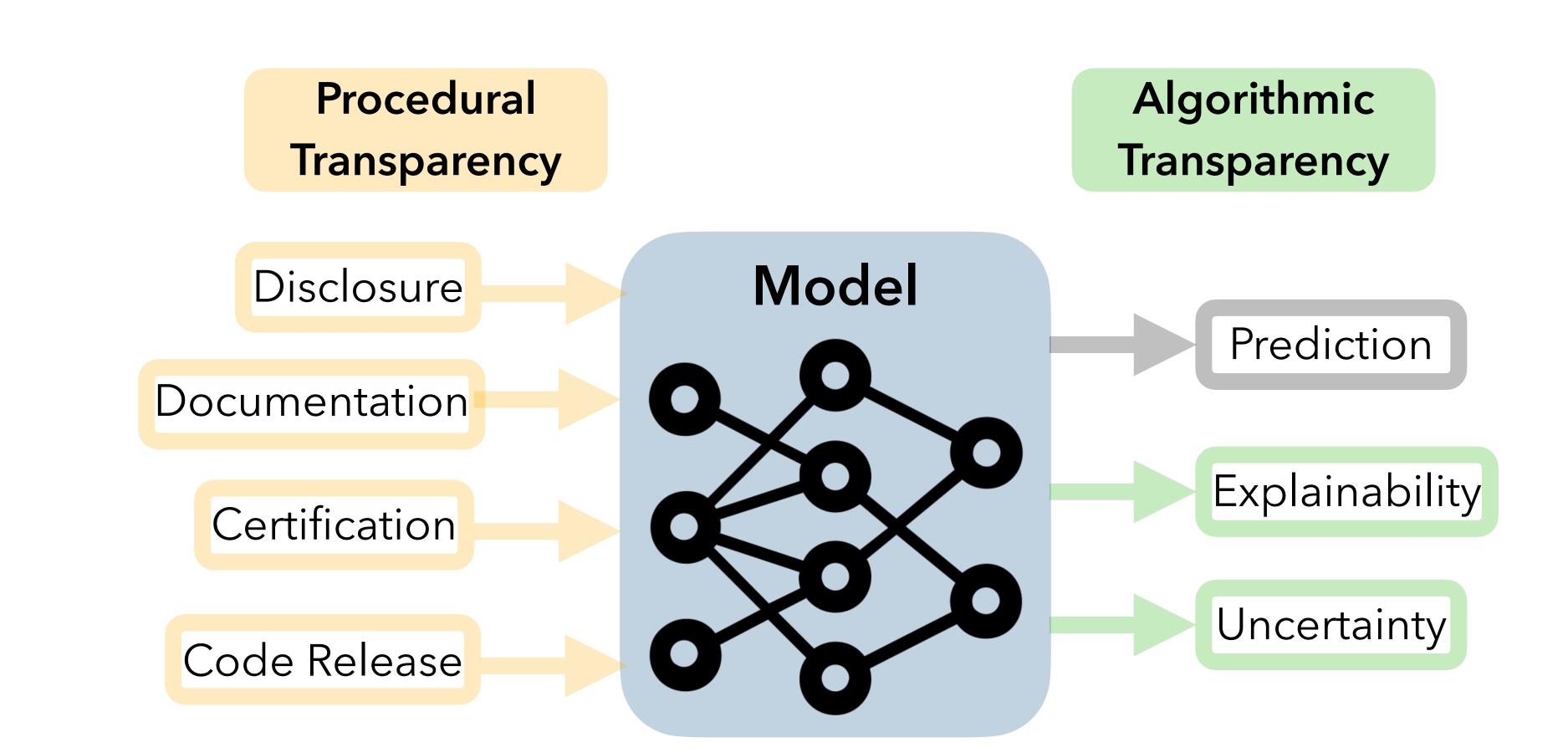


Human-Machine Team

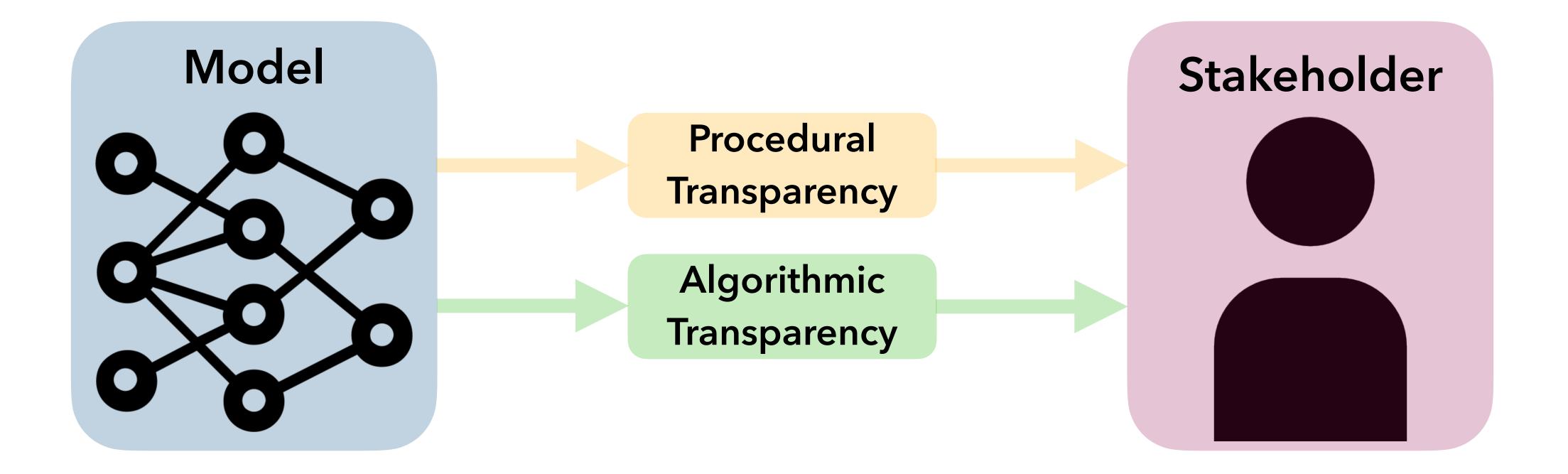


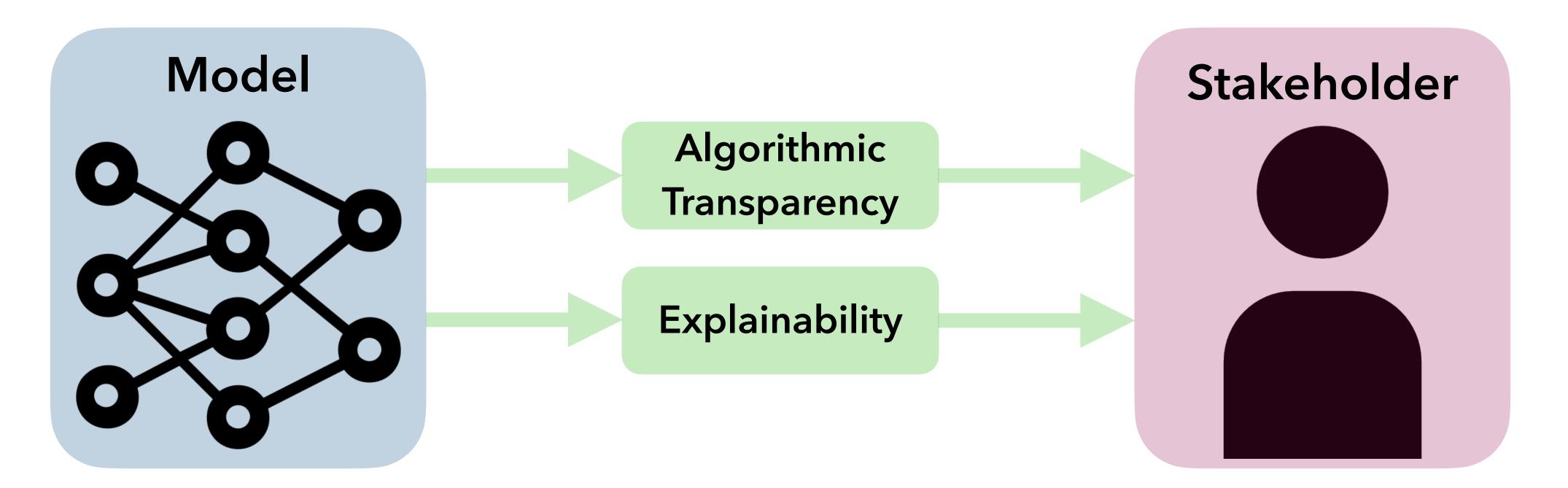
B, Xiang, Sharma, Weller, Taly, Jia, Ghosh, Puri, Moura, Eckersley. *Explainable Machine Learning in Deployment*. ACM FAccT. 2020.

Transparency means providing stakeholders with *relevant* information about how a model works



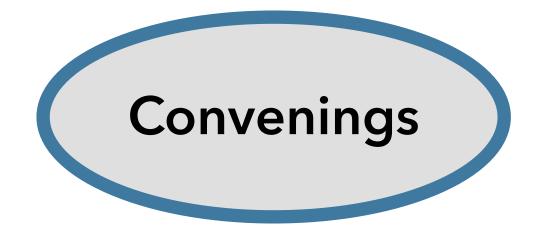
B, Shams. Trust in Artificial Intelligence: Clinicians Are Essential. Chapter 10 in Healthcare Information Technology for Cardiovascular Medicine. 2021.

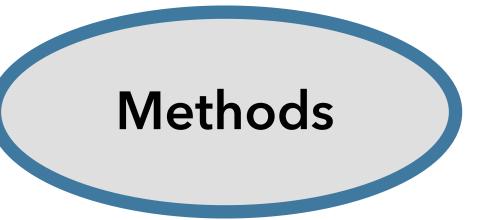




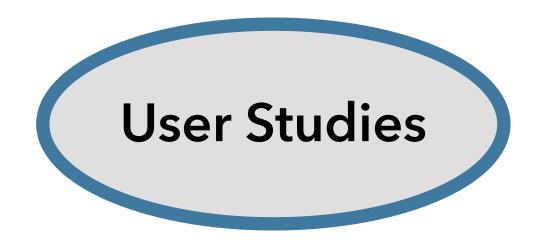
B, Xiang, Sharma, Weller, Taly, Jia, Ghosh, Puri, Moura, Eckersley. *Explainable Machine Learning in Deployment*. ACM FAccT. 2020.

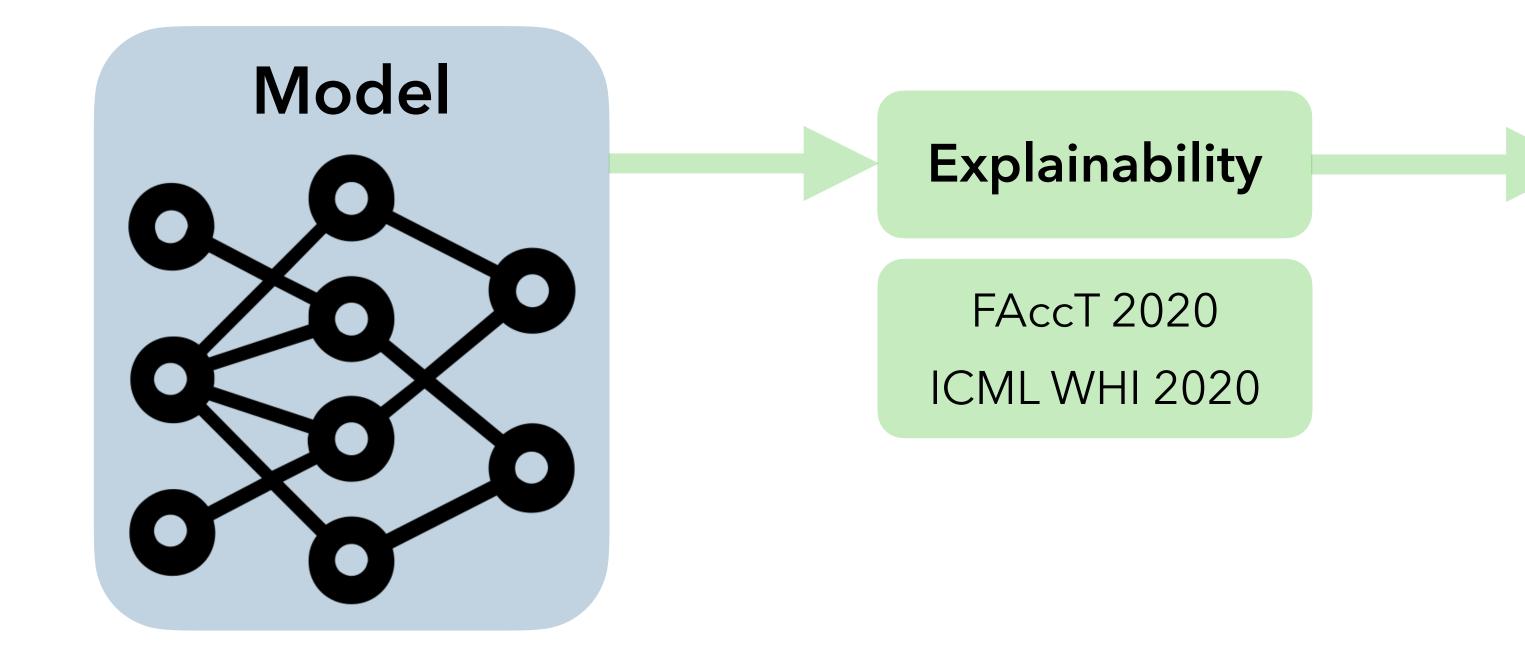
Explainability means providing insight into a model's behavior for specific datapoint(s)



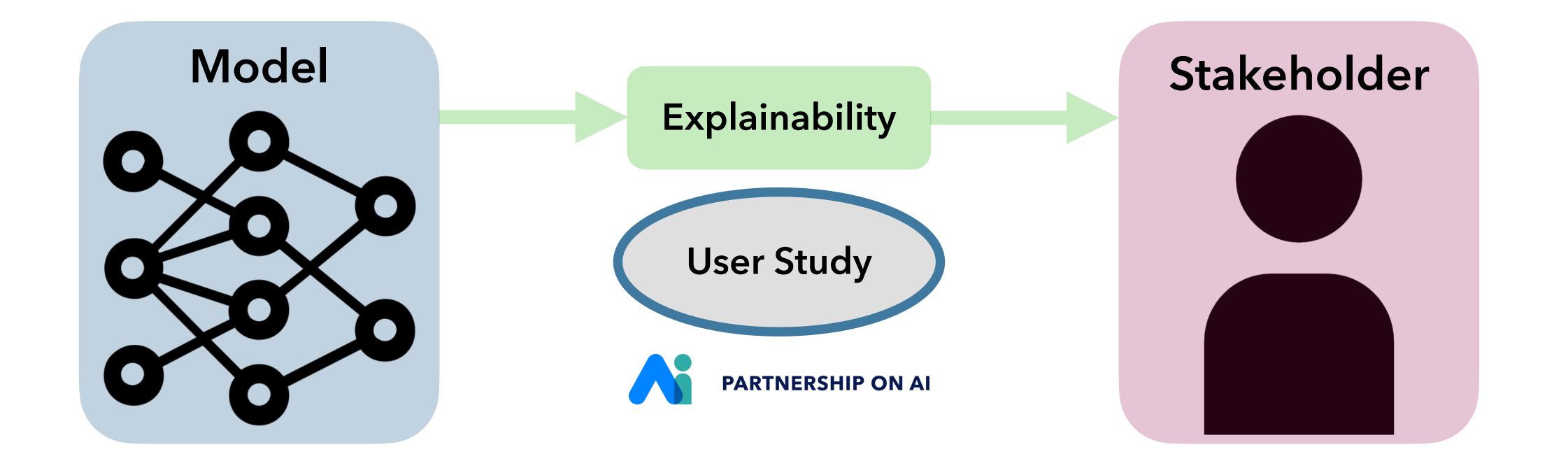


Research Style





Stakeholder

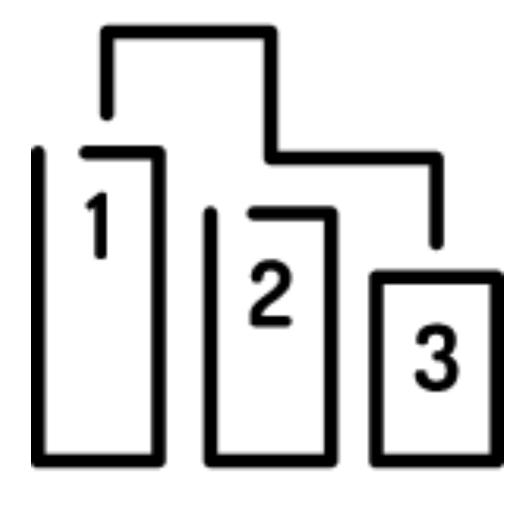


Goal: understand how explainability methods are used in *practice*

Approach: 30min to 2hr *semi-structured* interviews with 50 individuals from 30 organizations

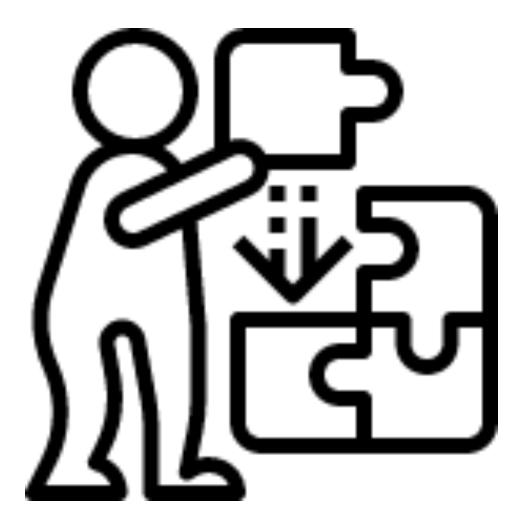
B, Xiang, Sharma, Weller, Taly, Jia, Ghosh, Puri, Moura, Eckersley. *Explainable Machine Learning in Deployment*. ACM FAccT. 2020.

Popular Explanation Styles



Feature Importance

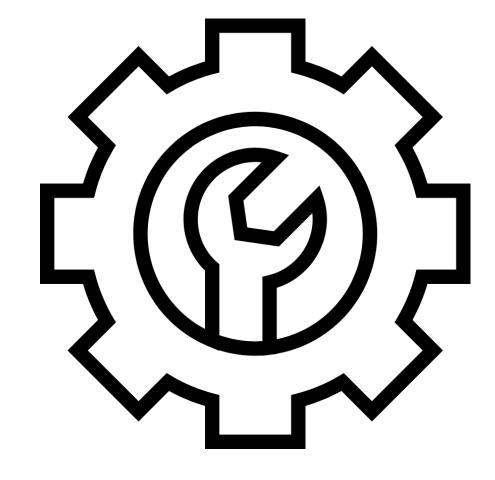
B, Xiang, Sharma, Weller, Taly, Jia, Ghosh, Puri, Moura, Eckersley. *Explainable Machine Learning in Deployment*. ACM FAccT. 2020.



Sample Importance

Counterfactuals

Common Explanation Stakeholders



Executives

Engineers

B, Xiang, Sharma, Weller, Taly, Jia, Ghosh, Puri, Moura, Eckersley. *Explainable Machine Learning in Deployment*. ACM FAccT. 2020.

End Users

Regulators

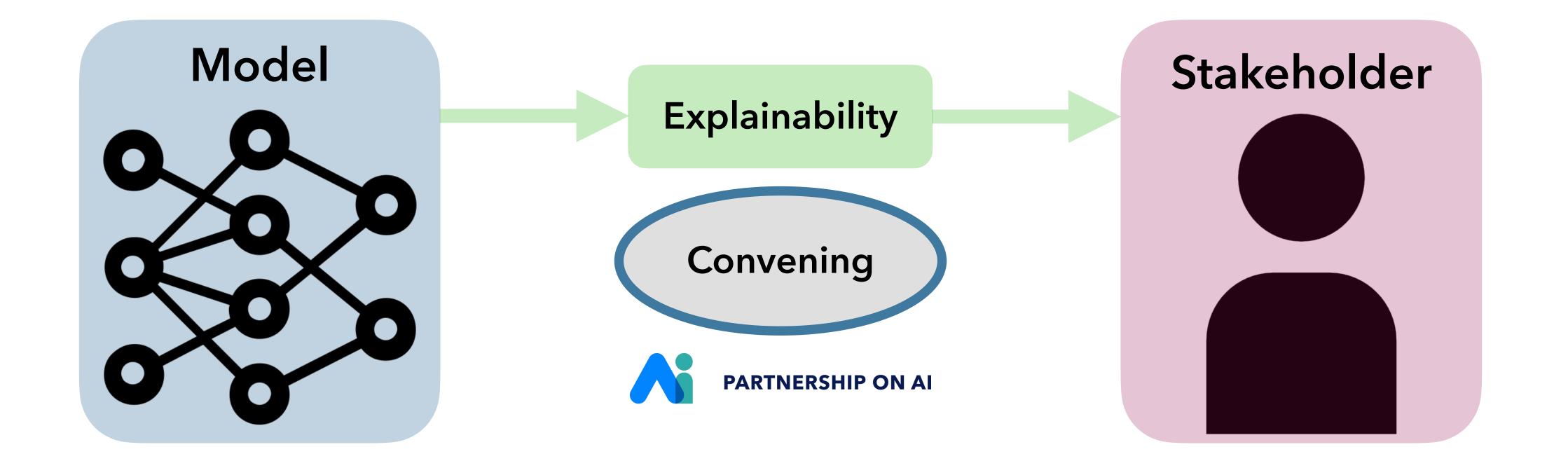
1. Explainability is used for **debugging** internally 2. Goals of explainability are not clearly defined

- within organizations
- to deploy in real-time

B, Xiang, Sharma, Weller, Taly, Jia, Ghosh, Puri, Moura, Eckersley. *Explainable Machine Learning in Deployment*. ACM FAccT. 2020.

Findings

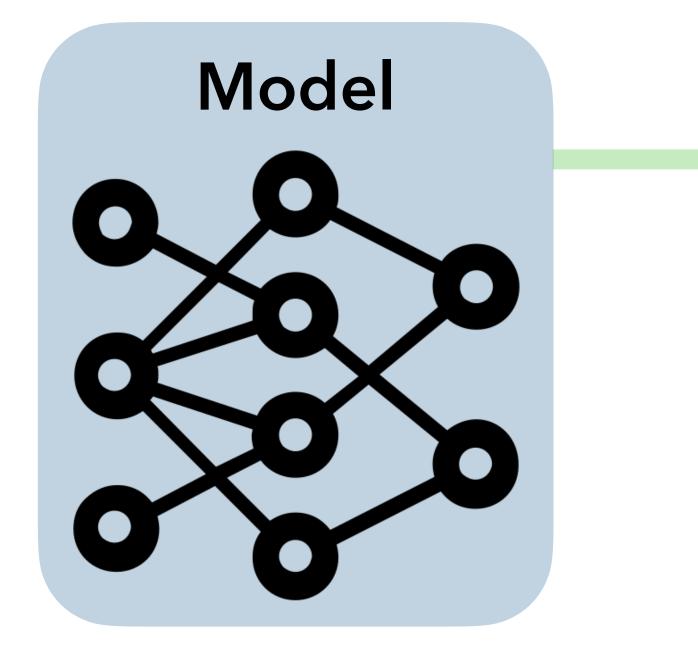
3. Technical limitations make explainability hard



Goal: facilitate an inter-stakeholder conversation around explainability

Conclusion: Community engagement and context consideration are important factors in deploying explainability thoughtfully

B, Andrus, Xiang, Weller. *Machine Learning Explainability for External Stakeholders*. ICML WHI. 2020.



Data Scientist

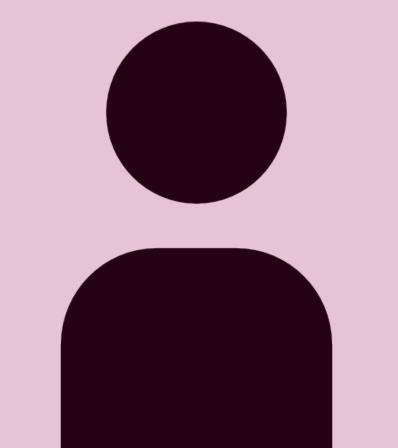
Explanation Evaluation

IJCAI 2020 AAAI 2021

Explainability

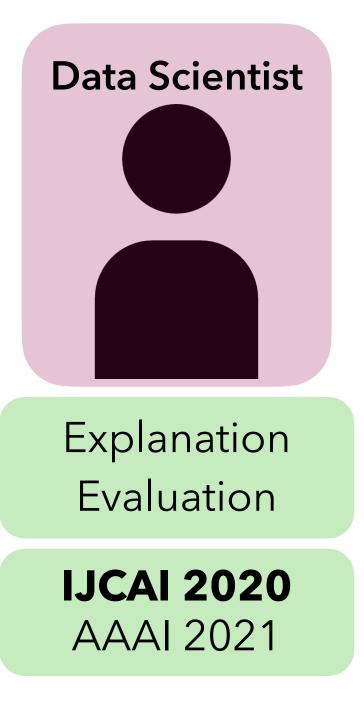
FAccT 2020 ICML WHI 2020

Stakeholder



Explanations of Unfairness

ECAI 2020 AAAI 2022a



Assess properties of explanations

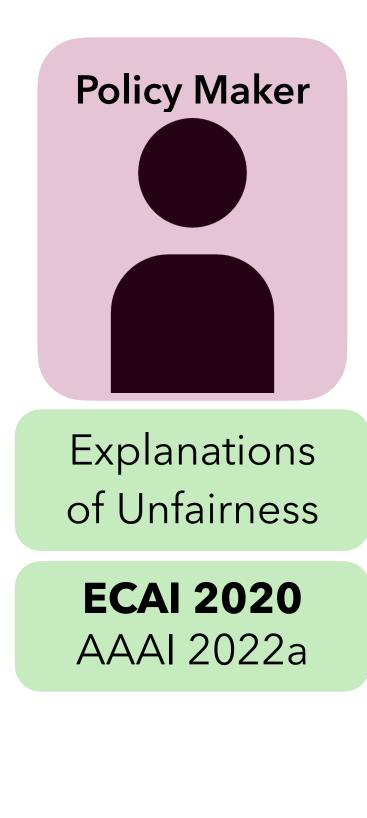
Candidate Properties

$$\mu(f, g, x, r) = \int_{\rho(x, z) \le \infty} f(x, z) = \int_{\rho(x, z) \ge \infty} f(x, z) =$$

B, Moura, Weller. Evaluating and Aggregating Feature-based Model Explanations. IJCAI. 2020.

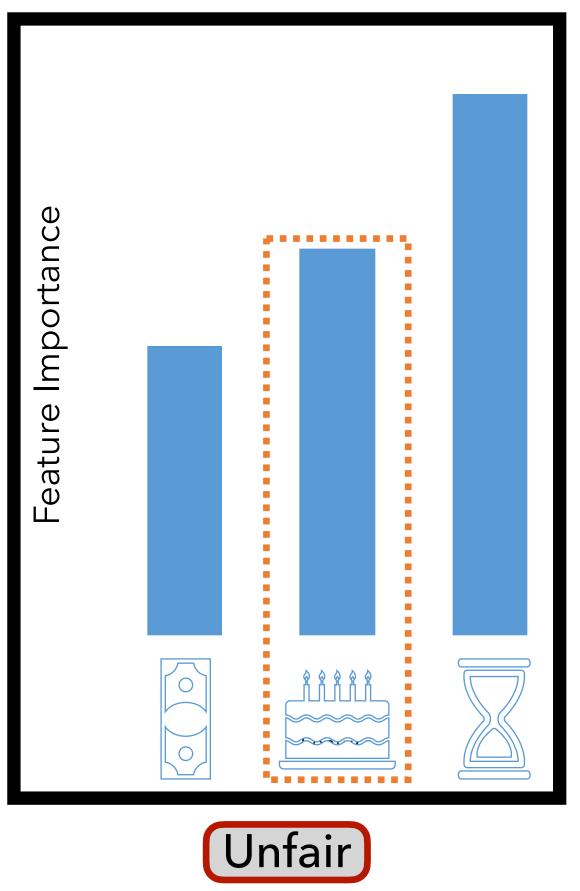
Model $f: \mathcal{X} \mapsto \mathcal{Y}$

- Explanation Function $g: \mathcal{F} \times \mathcal{X} \mapsto \mathbb{R}$
- Problem: "There are many of candidate explanation methods (LIME, SHAP, etc.) but it is unclear how to decide when to use each."
 - Sensitivity: Do similar inputs have similar explanations?
 - $D(g(f, x), g(f, z))\mathbb{P}_{x}(z)dz$
- Faithfulness: Does the explanation capture features important for prediction?
 - $\mu(f, g, x, S) = \operatorname{corr}(\frac{1}{|S|} \sum_{i \in S} g(f, x)_i, f(x) f(x_{[x_s = \bar{x}_s]}))$
 - Complexity: Is the explanation digestible? $\mu(f, g, x) = H(x) = \mathbb{E}_i \left[-\ln(|g(f, x)_i|) \right]$
- We go on to show how to (A) aggregate multiple explanations into a consensus and (B) how to optimize an explanation for a selected criterion



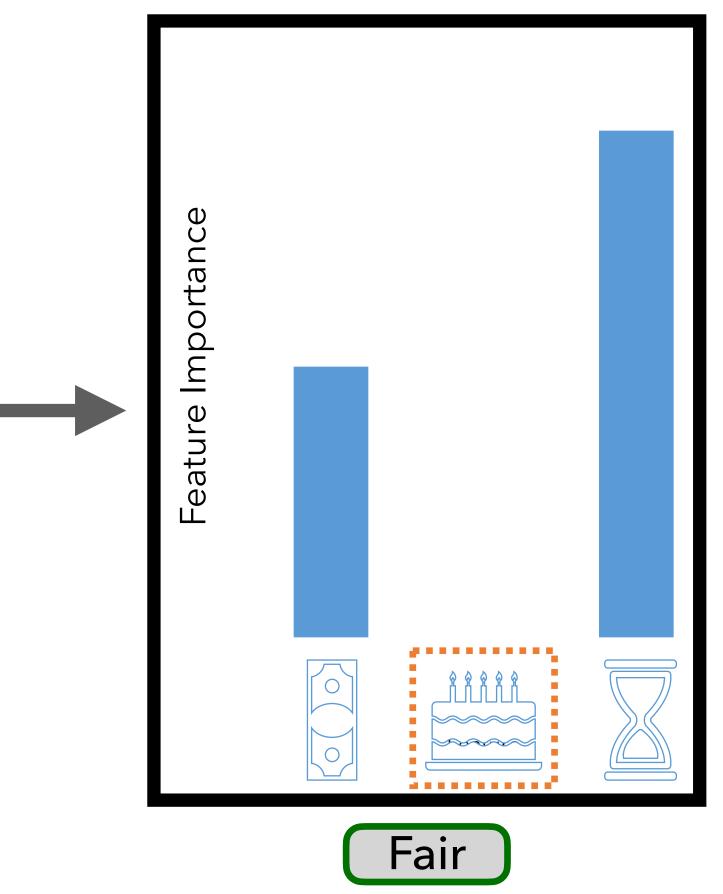
Assure model fairness via explanations

Model A

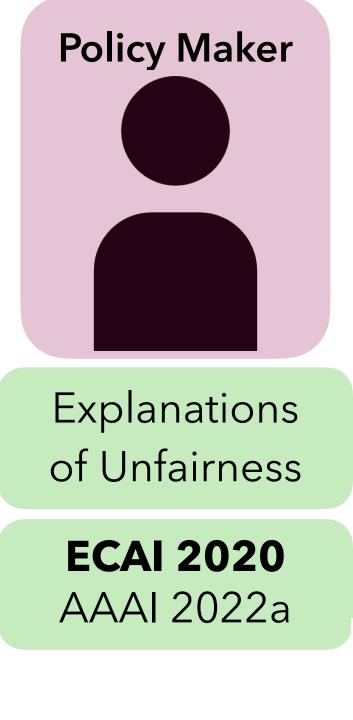


Dimanov, **B**, Jamnik, Weller. You shouldn't trust me: Learning models which conceal unfairness from multiple explanation methods. ECAI. 2020.

Model B



Methods

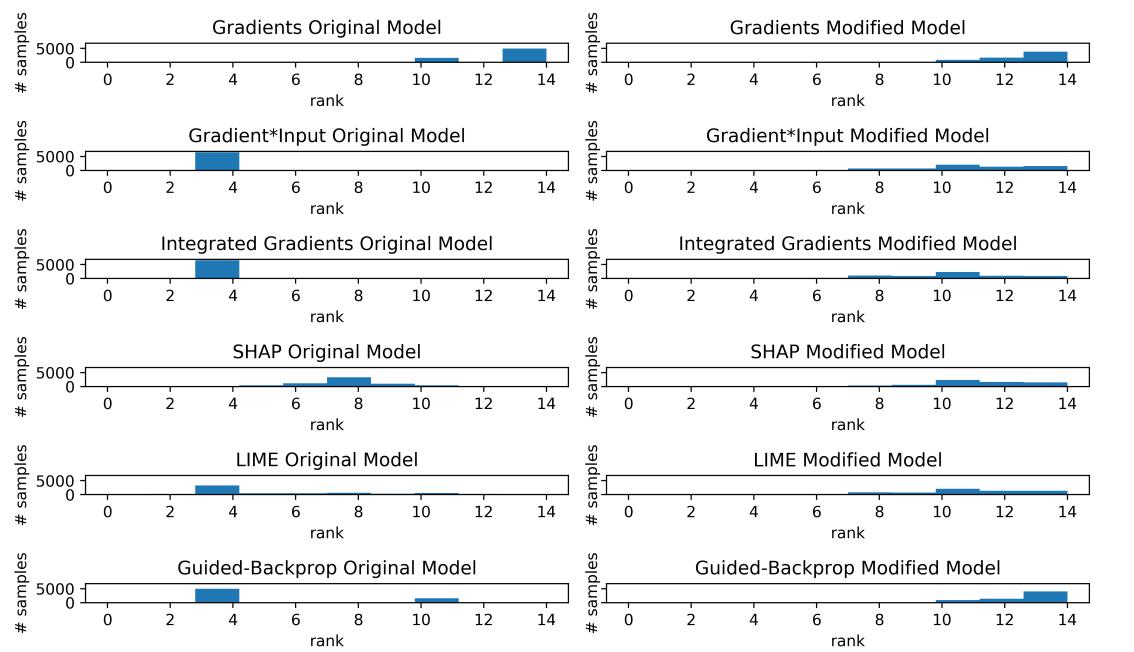


DoAssasseumeorde de la faiesse sia véa petap ativations

Attribution of Sensitive Attribute

Our Goal $f_{\theta} \to f_{\theta+\delta}$

 $\operatorname{argmin}_{\delta} L' = L(f_{\theta+\delta}, x, y) + \frac{\alpha}{n} \left| \left| \nabla_{\mathbf{X}_{:,j}} L(f_{\theta+\delta}, x, y) \right| \right|$



Heo, Joo, Moon. Fooling Neural Network interpretations via adversarial model manipulation. NeurIPS. 2019. Dimanov, **B**, Jamnik, Weller. You shouldn't trust me: Learning models which conceal unfairness from multiple explanation methods. ECAI. 2020.

Methods

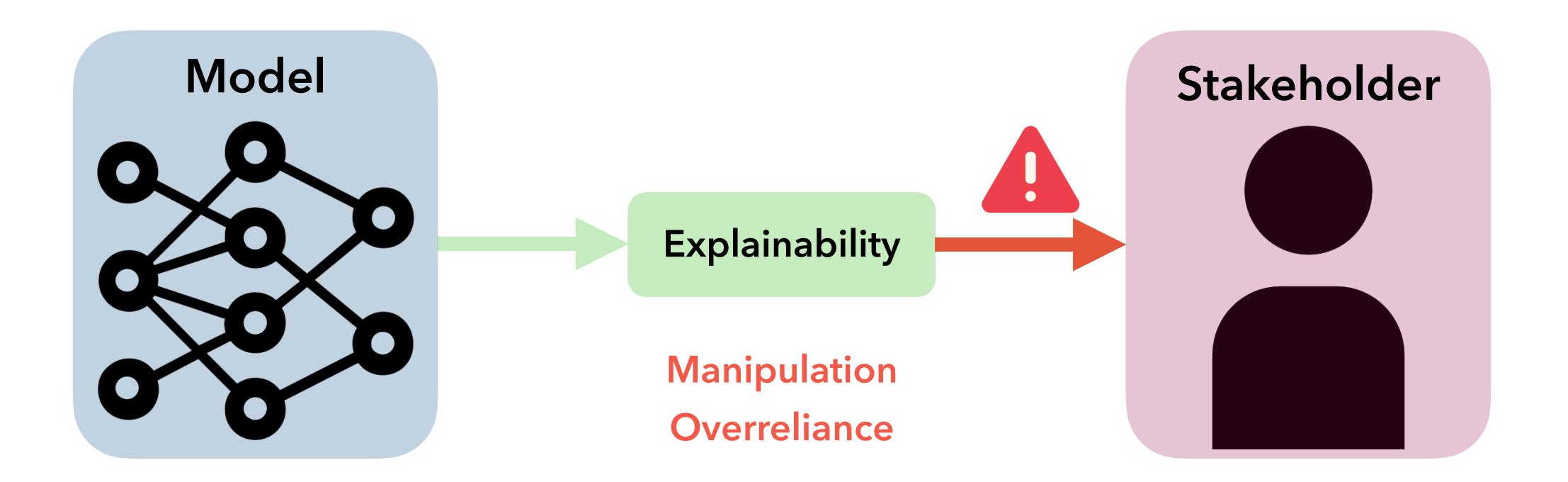
- - **1. Model Similarity** $\forall i, f_{\theta+\delta}(\mathbf{x}^{(i)}) \approx f_{\theta}(\mathbf{x}^{(i)})$
 - 2. Low Target Attribution $\forall i$, $|g(f_{\theta+\delta}, \mathbf{x}^{(i)})_j| \ll |g(f_{\theta}, \mathbf{x}^{(i)})_j|$
- **Adversarial Explanation Attack**

 $g(f, x)_i$

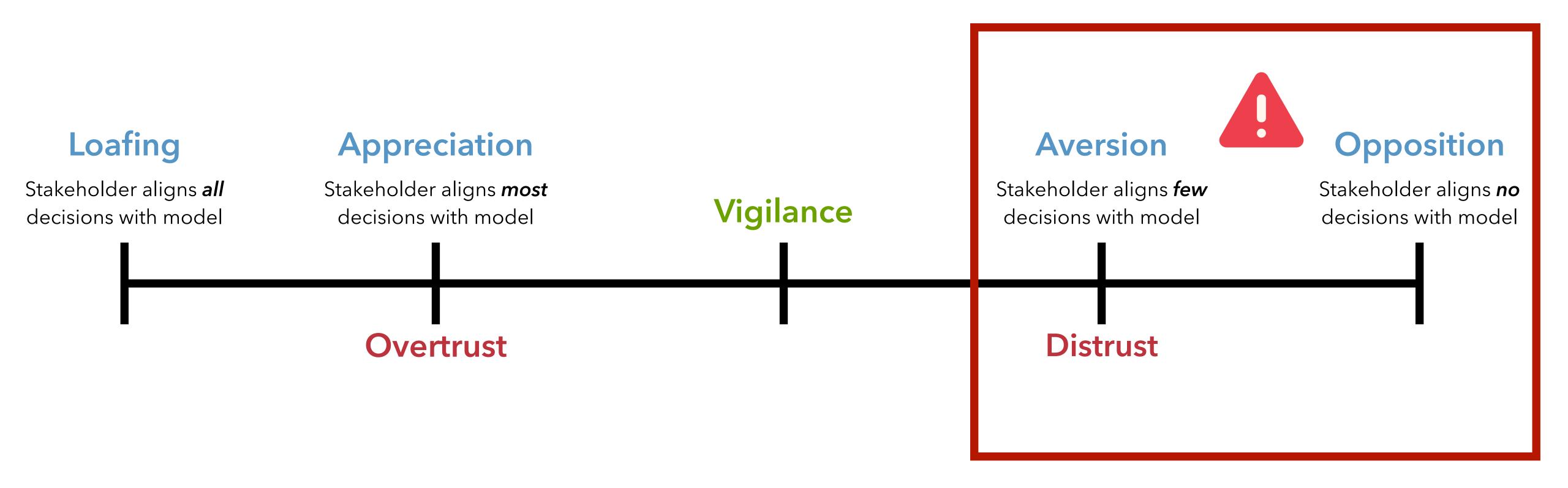
Our proposed attack:

- 1. Decreases relative importance significantly.
- 2. Generalizes to test points.
- 3. Transfers across explanation methods.





Weller. Transparency: Motivations and Challenges. Chapter 2 in Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. 2019 Buçinca, Malaya, Gajos. To Trust or to Think: Cognitive Forcing Functions Can Reduce Overreliance on AI in AI-assisted Decision-making. CSCW. 2021. Zerilli, **B**, Weller. How transparency modulates trust in artificial intelligence. Patterns. 2022.

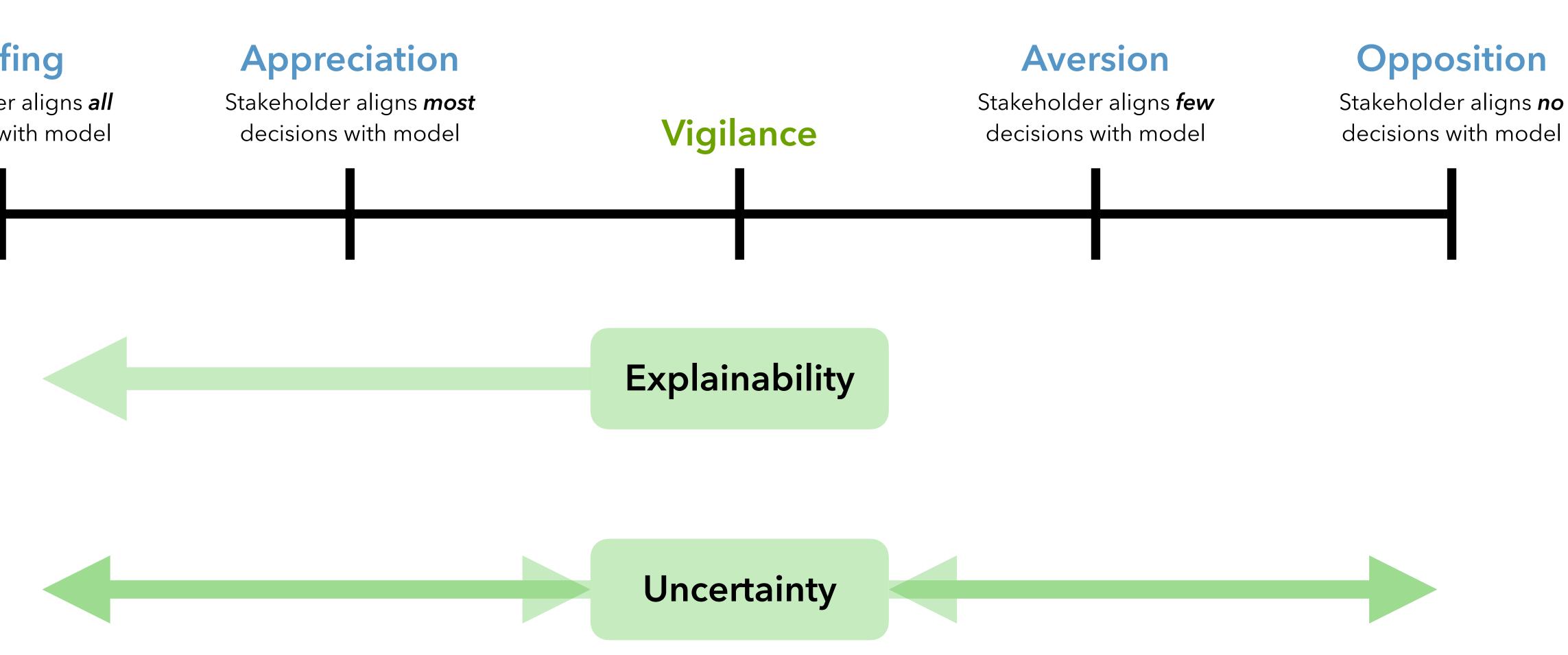


Dietvorst, Simmons, Massey. Algorithm aversion: People Erroneously Avoid Algorithms after Seeing Them Err. Journal of Experimental Psychology. 2015. Logg, Minson, Moore. Algorithm appreciation: People prefer algorithmic to human judgment. Organizational Behavior and Human Decision Processes. 2019. Zerilli, **B**, Weller. How transparency modulates trust in artificial intelligence. Patterns. 2022.

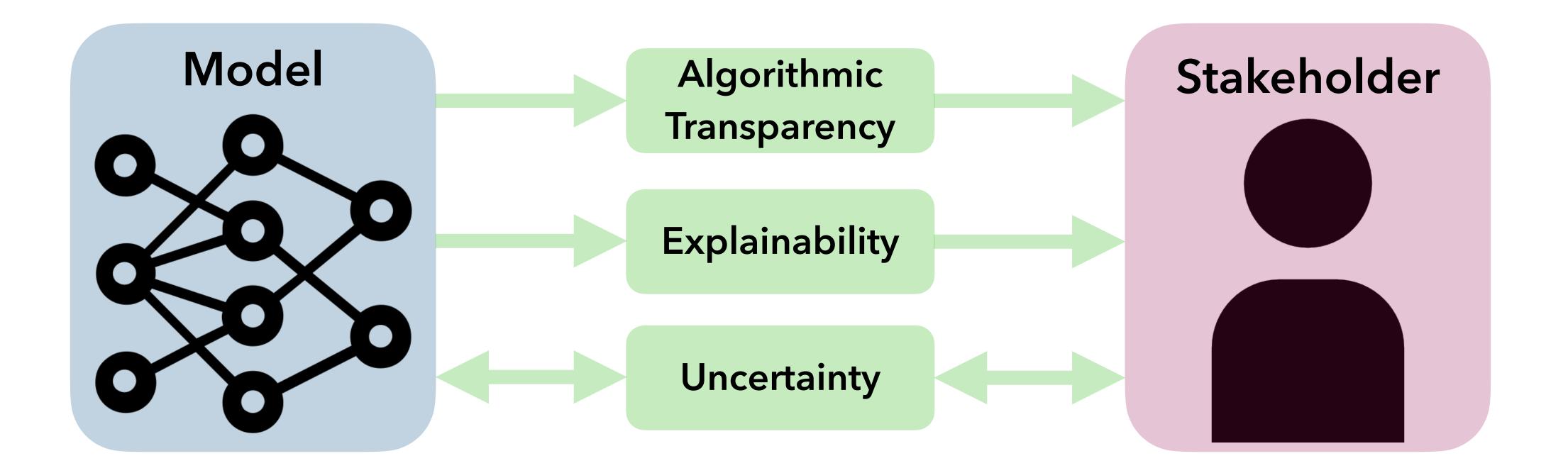
Loafing

Stakeholder aligns **all** decisions with model

decisions with model

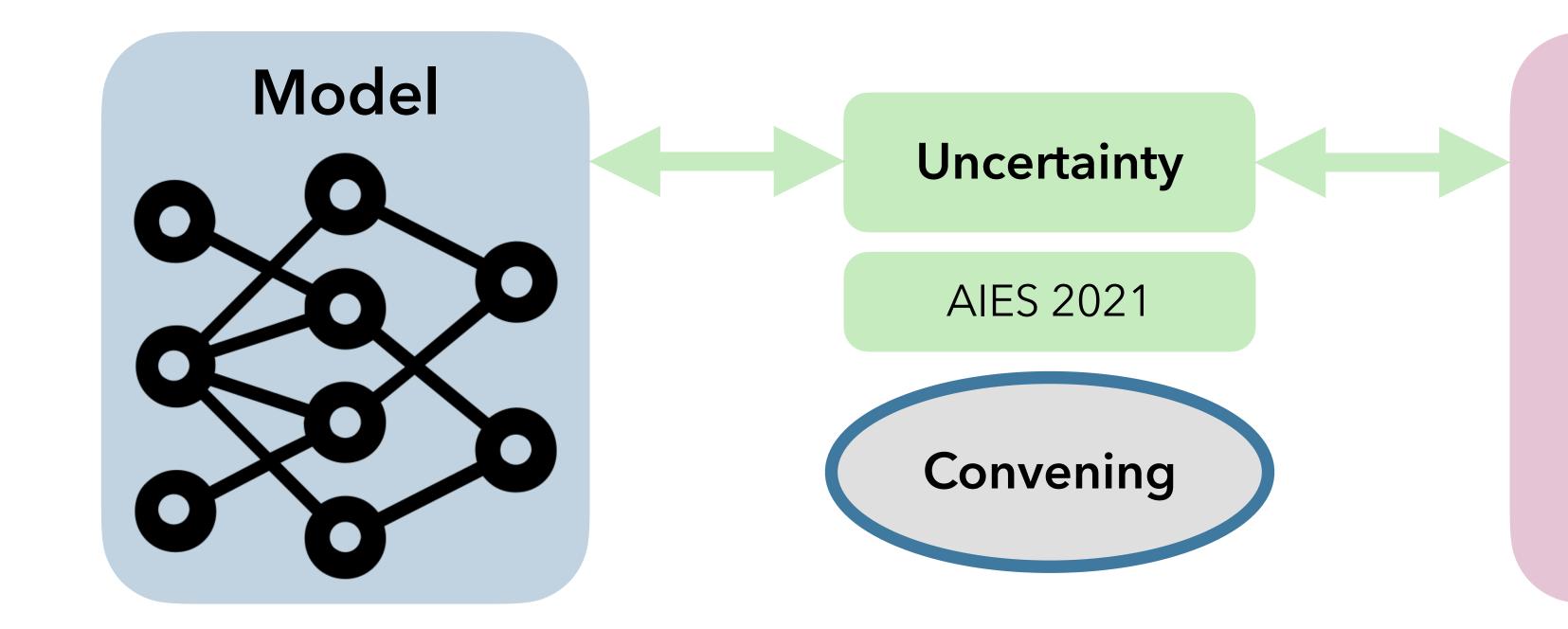


Buçinca, Malaya, Gajos. To Trust or to Think: Cognitive Forcing Functions Can Reduce Overreliance on AI in AI-assisted Decision-making. CSCW. 2021. Zerilli, **B**, Weller. How transparency modulates trust in artificial intelligence. Patterns. 2022.

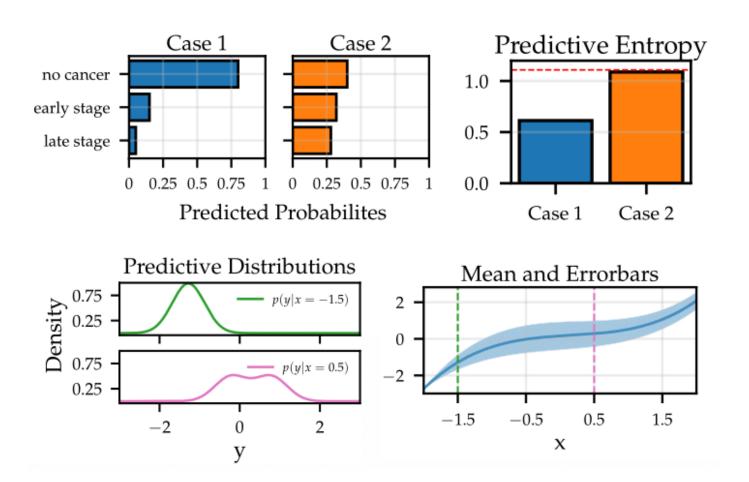


B, Antoran, Zhang, Liao, Sattigeri, Fogliato, et al. Uncertainty as a Form of Transparency: Measuring, Communicating, and Using Uncertainty. ACM AIES. 2021. Zerilli, **B**, Weller. How transparency modulates trust in artificial intelligence. Patterns. 2022.





Step 1: Measuring



- Trust Formation:

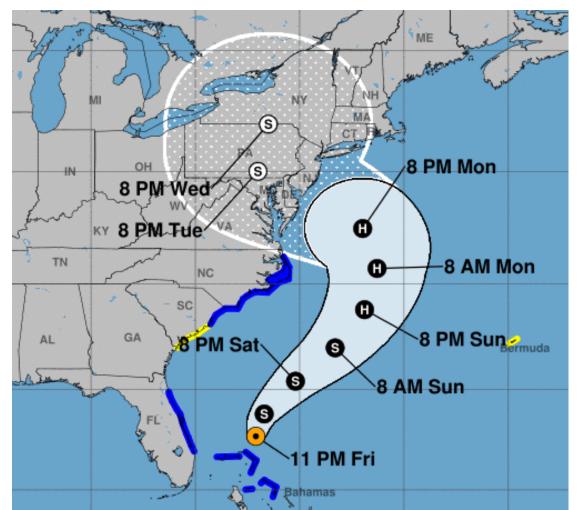
B, Antoran, Zhang, Liao, Sattigeri, Fogliato, et al. Uncertainty as a Form of Transparency: Measuring, Communicating, and Using Uncertainty. ACM AIES. 2021.

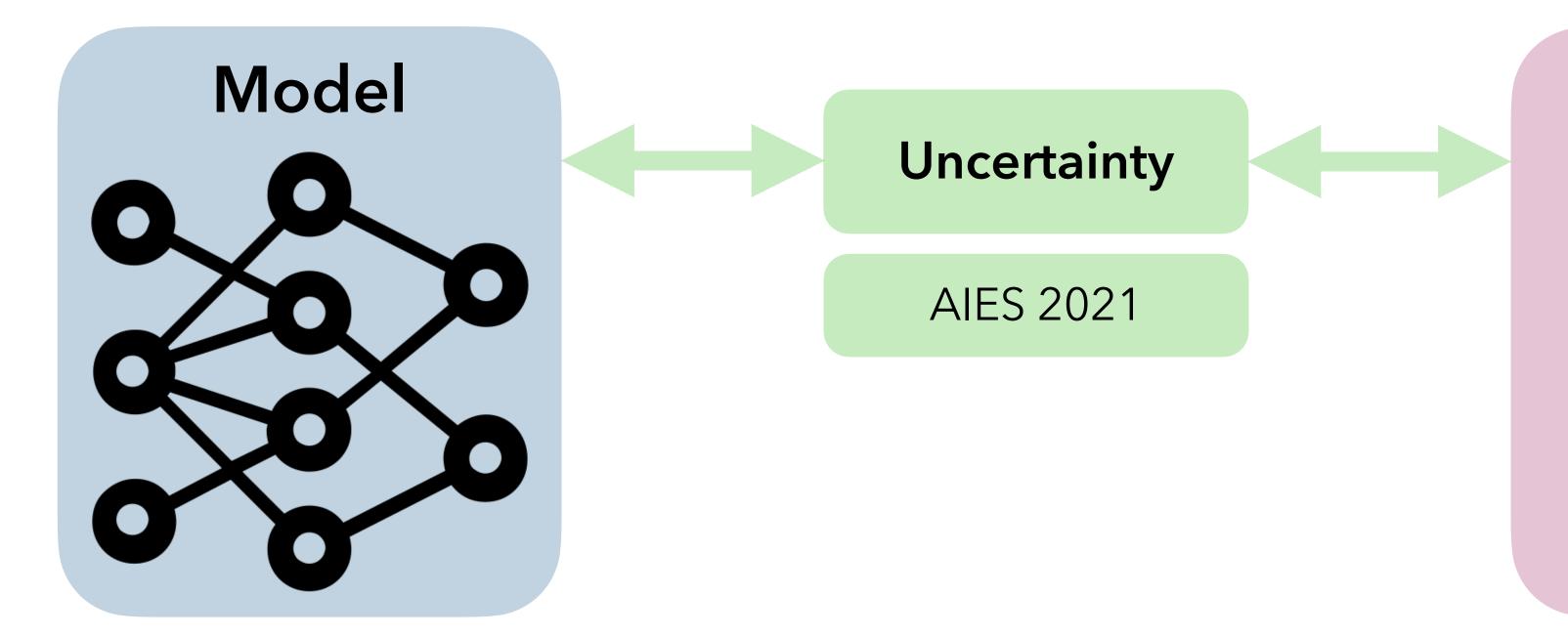
Stakeholder

Step 2: Using

• Fairness: Measurement and Sampling Bias • Decision-Making: Building **Reject Option Classifiers** Displaying Ability, Benevolence, and Integrity

Step 3: Communicating

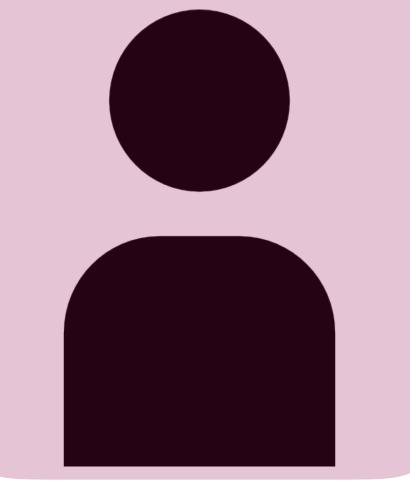


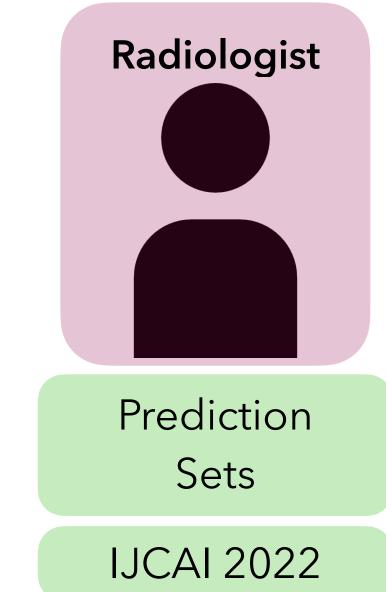


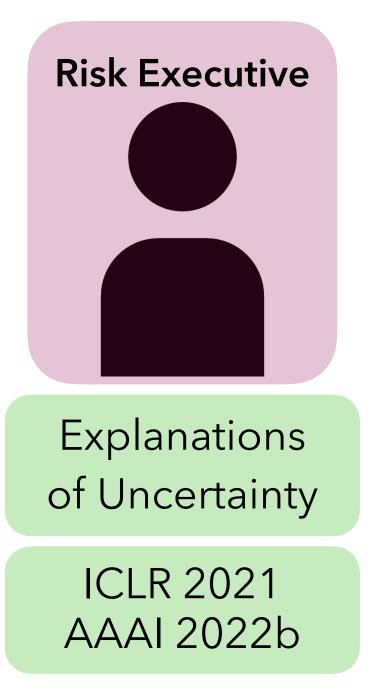
Explanations of Uncertainty

ICLR 2021 AAAI 2022b

Stakeholder

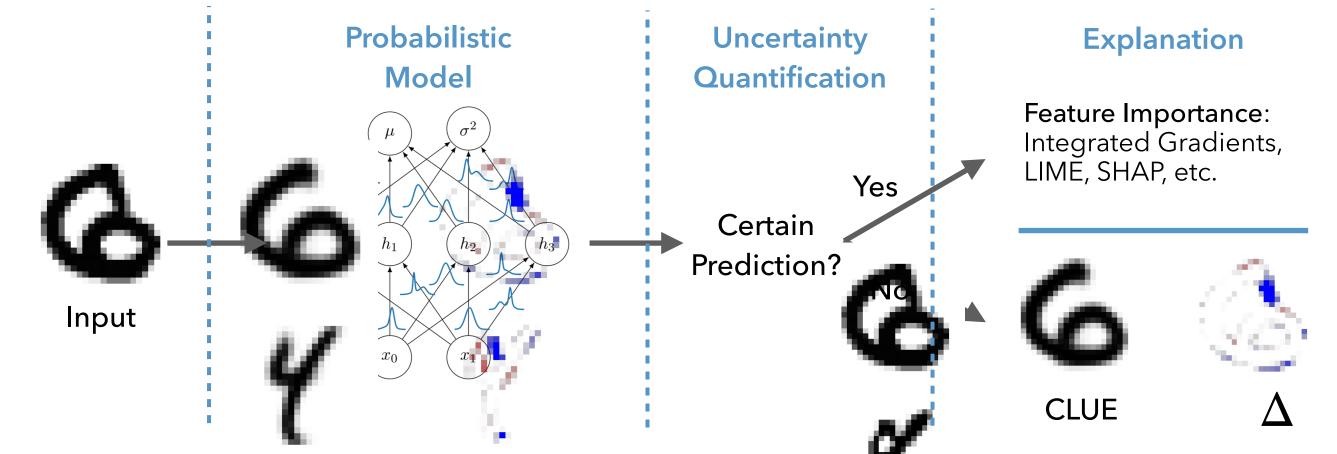






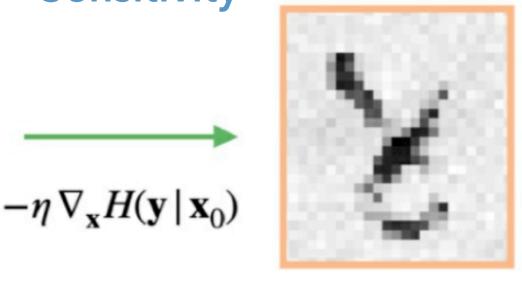
CLUE: Counterfactual Latent Uncertainty Explanations

Question: "Where in my input does uncertainty about my outcome lie?"



Formulation: What is the smallest change we need to make to an input, while staying in-distribution, such that our model produces more certain predictions?

Sensitivity

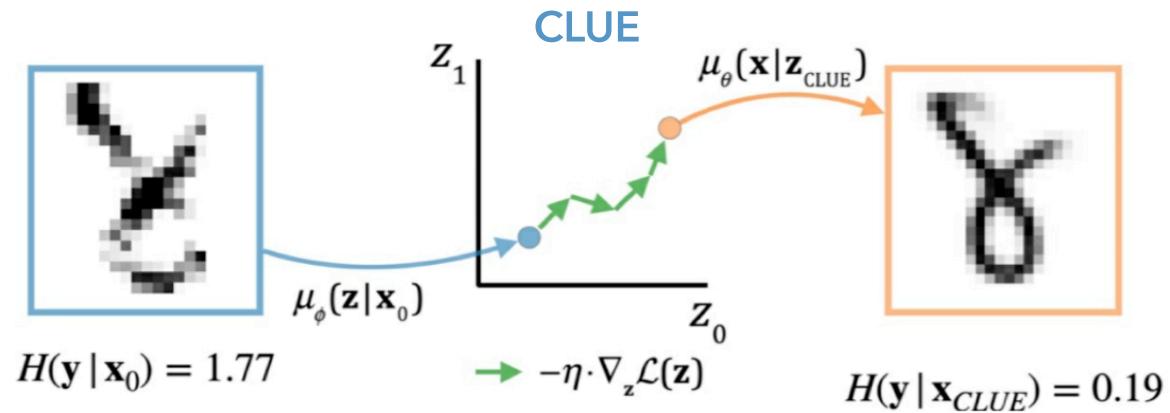


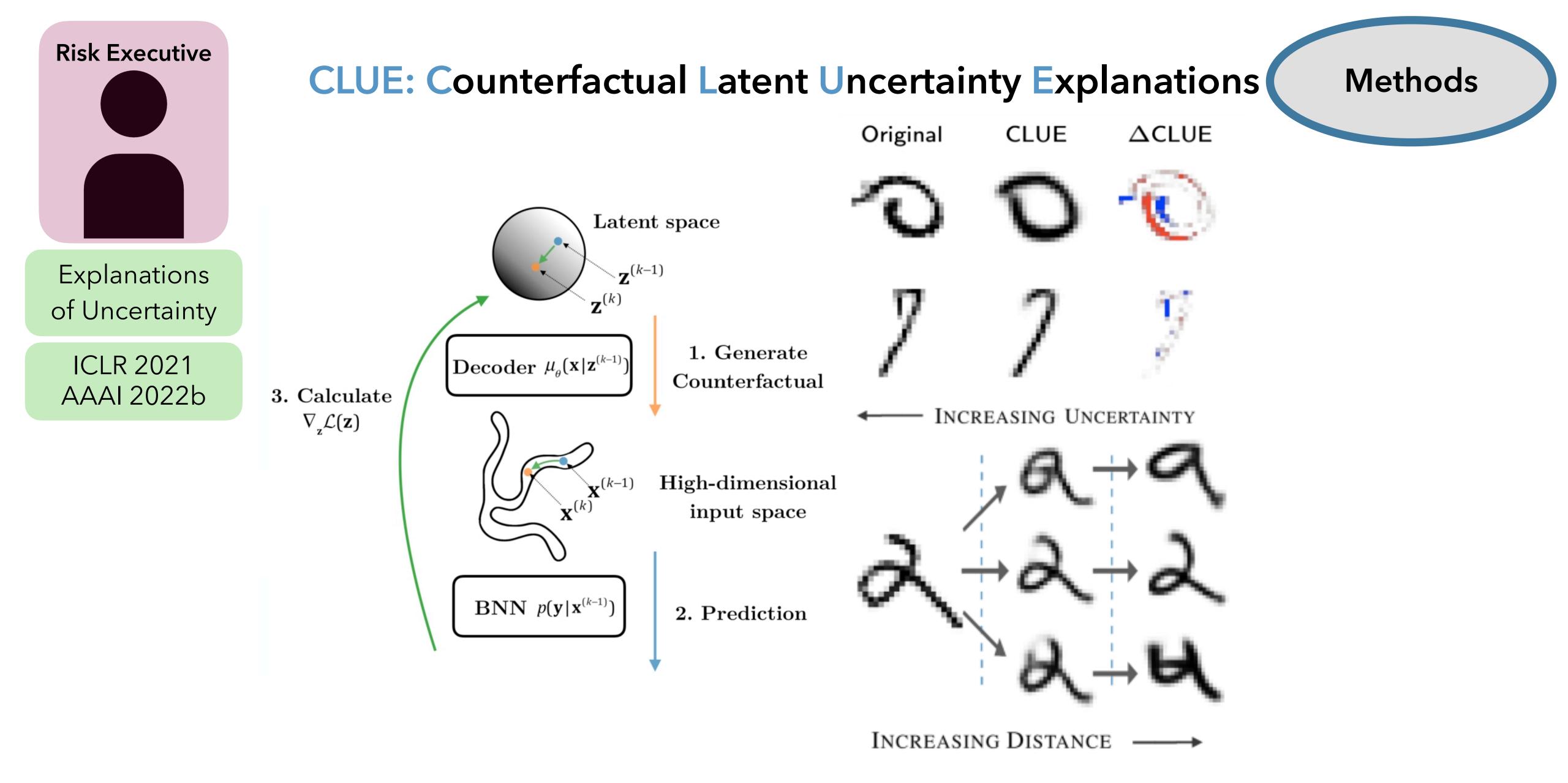
 $H(\mathbf{y} | \mathbf{x}_0) = 1.77$

 $H(\mathbf{y} \mid \mathbf{x}_{sens}) = 0.12$

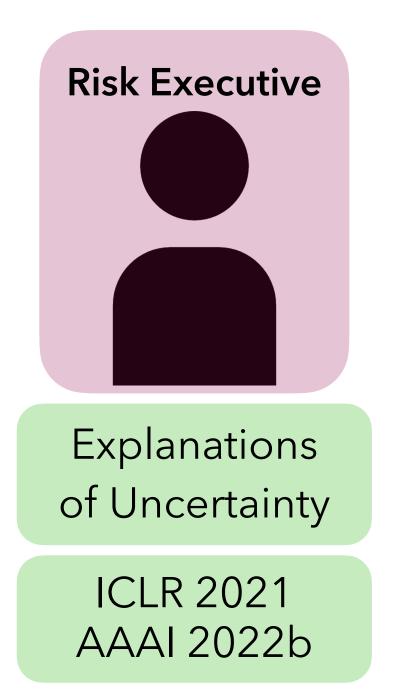
Antoran, B, Adel, Weller, Hernandez-Lobato. Getting a CLUE: A Method for Explaining Uncertainty Estimates. ICLR. 2021. Ley, **B**, Weller. Diverse and Amortised Counterfactual Explanations for Uncertainty Estimates. AAAI. 2022.

Methods





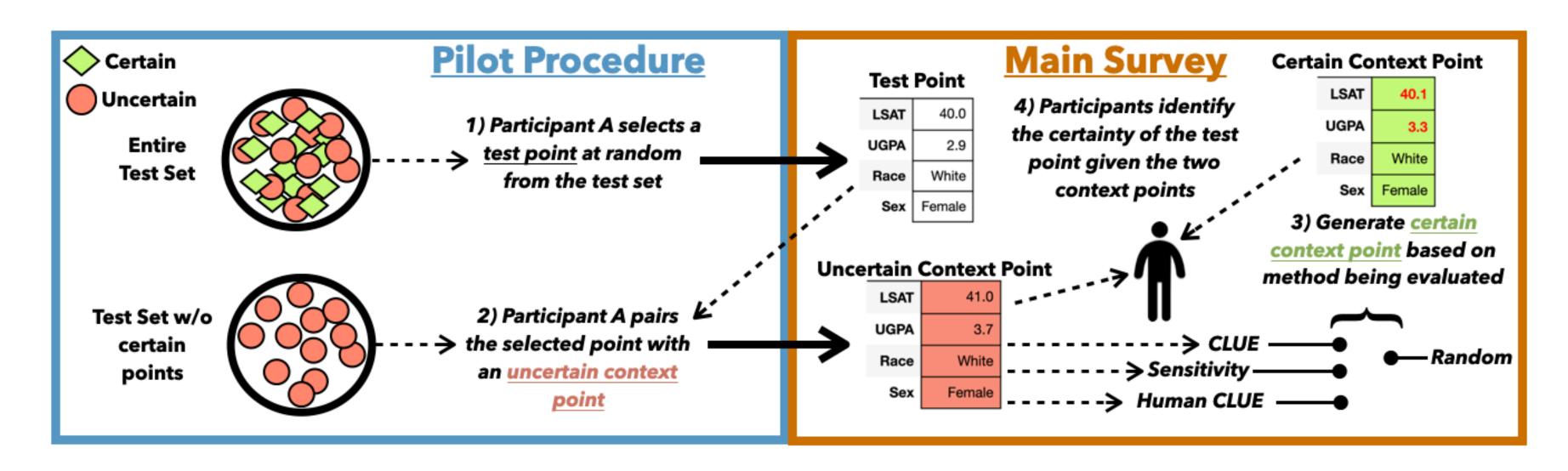
Antoran, **B**, Adel, Weller, Hernandez-Lobato. *Getting a CLUE: A Method for Explaining Uncertainty Estimates*. ICLR. 2021. Ley, **B**, Weller. *Diverse and Amortised Counterfactual Explanations for Uncertainty Estimates*. AAAI. 2022.



CLUE: Counterfactual Latent Uncertainty Explanations

Human Simulatability: Users are shown context examples and are tasked with predicting model behavior on new datapoint.

Uncertain			Certain		?	
Age	Less than 25	Age	Less than 25	Age	Less than 25	
Race	Caucasian	Race	African-American	Race	Hispanic	
Sex	Male	Sex	Male	Sex	Male	
Current Charge	Misdemeanour	Current Charge	Misdemeanour	Current Charge	Misdemeanour	
Reoffended Before	Yes	Reoffended Before	No	Reoffended Before	No	
Prior Convictions	1	Prior Convictions	0	Prior Convictions	0	
Days Served	0	Days Served	0	Days Served	0	

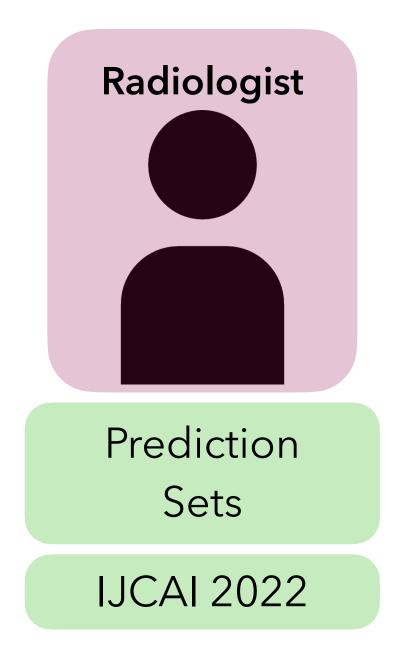


Antoran, **B**, Adel, Weller, Hernandez-Lobato. *Getting a CLUE: A Method for Explaining Uncertainty Estimates*. ICLR. 2021. Ley, **B**, Weller. *Diverse and Amortised Counterfactual Explanations for Uncertainty Estimates*. AAAI. 2022.

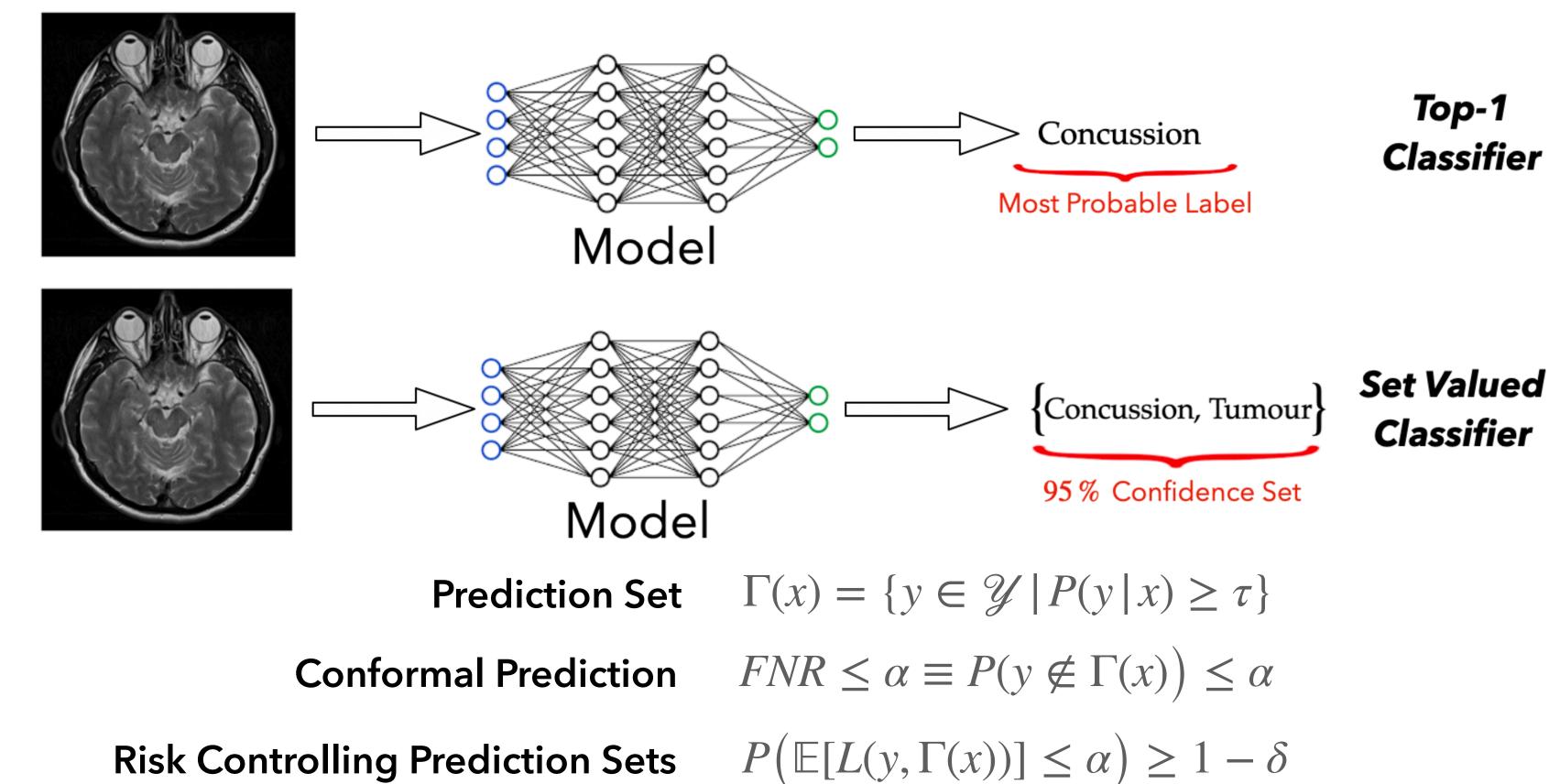
User Studies

	Combined	LSAT	COMPA
CLUE	82.22	83.33	81.11
Human CLUE	62.22	61.11	63.33
Random	61.67	62.22	61.11
Local Sensitivity	52.78	56.67	48.89

CLUE outperforms other approaches with statistical significance. (Using Nemenyi test for average ranks across test questions)



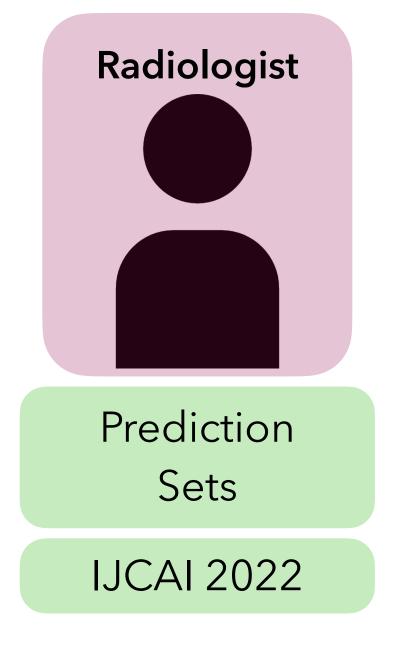
Generate prediction sets for experts



Vovk, Gammerman, Shafer. Algorithms in the Real World. 2005 Bates, Angelopoulos, Lei, Malik, Jordan. Distribution-Free, Risk-Controlling Prediction Sets. Journal of the ACM. 202. Babbar, **B**, Weller. On the Utility of Prediction Sets in Human-Al Teams. IJCAI. 2022.

Question: "What other outcomes are probable?"

Risk



Generate prediction sets for experts

Question: Do prediction sets improve human-machine team performance?

For CIFAR-100:

- Prediction sets are perceived to be more useful
- Users trust prediction sets more than Top-1 classifiers

Observation: Some prediction sets can be quite large, rendering them useless to experts!

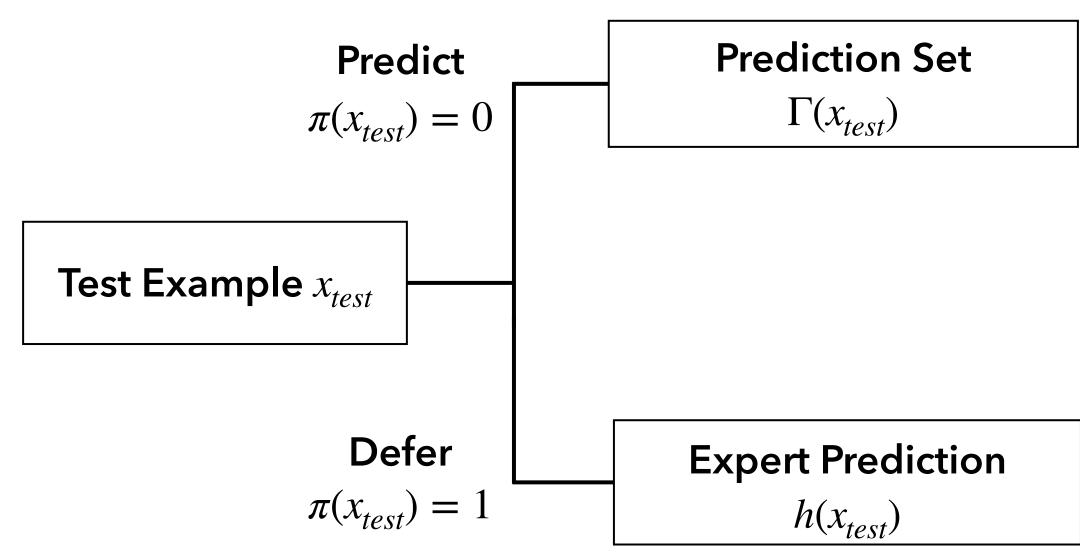
Idea: Learn a deferral policy $\pi(x) \in \{0,1\}$ and reduce prediction set size on remaining examples

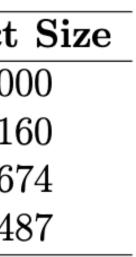
Babbar, **B**, Weller. On the Utility of Prediction Sets in Human-Al Teams. IJCAI. 2022.

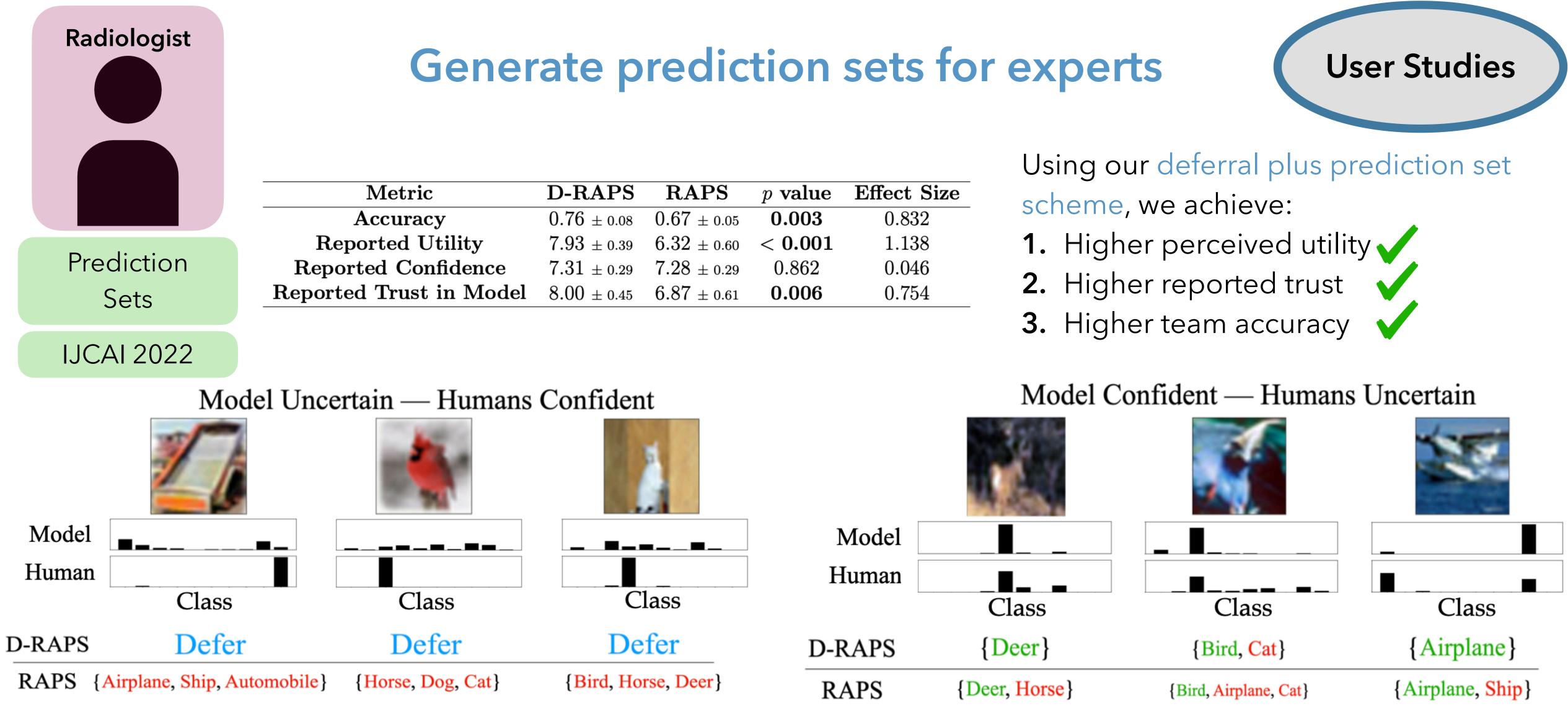
User Studies

A CP Scheme!

		▼		
Metric	Top-1	RAPS	p value	Effect
Accuracy	$0.76~\pm0.05$	$0.76~\pm 0.05$	0.999	0.0
Reported Utility	5.43 ± 0.69	$6.94\ \pm 0.69$	0.003	1.16
Reported Confidence	$7.21~\pm0.55$	$7.88\ \pm 0.29$	0.082	0.6'
Reported Trust in Model	$5.87{\scriptstyle~\pm~0.81}$	$8.00\ \pm 0.69$	< 0.001	1.48







We also (A) prove that set size is reduced for the non-deferred examples and (B) optimize for additional set properties (e.g., sets with similar labels).

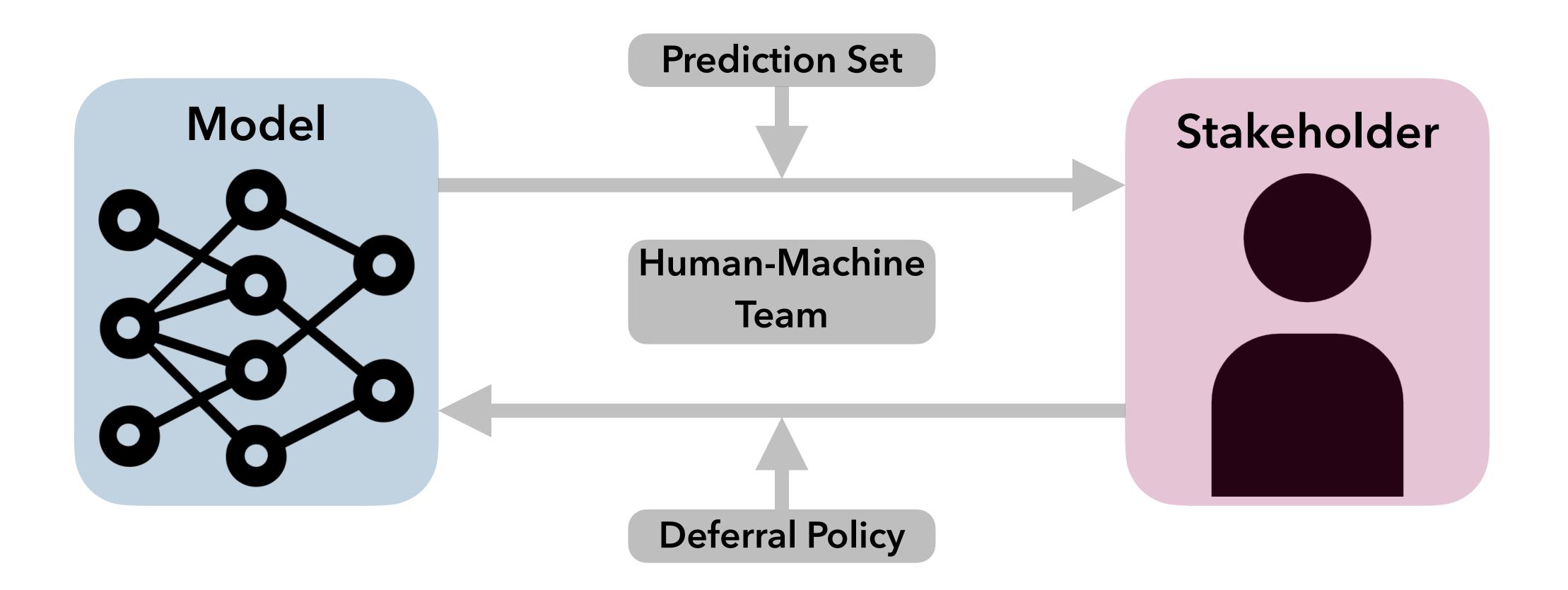
Babbar, **B**, Weller. On the Utility of Prediction Sets in Human-Al Teams. IJCAI. 2022.

	p value	Effect Size
)5	0.003	0.832
50	< 0.001	1.138
9	0.862	0.046
51	0.006	0.754

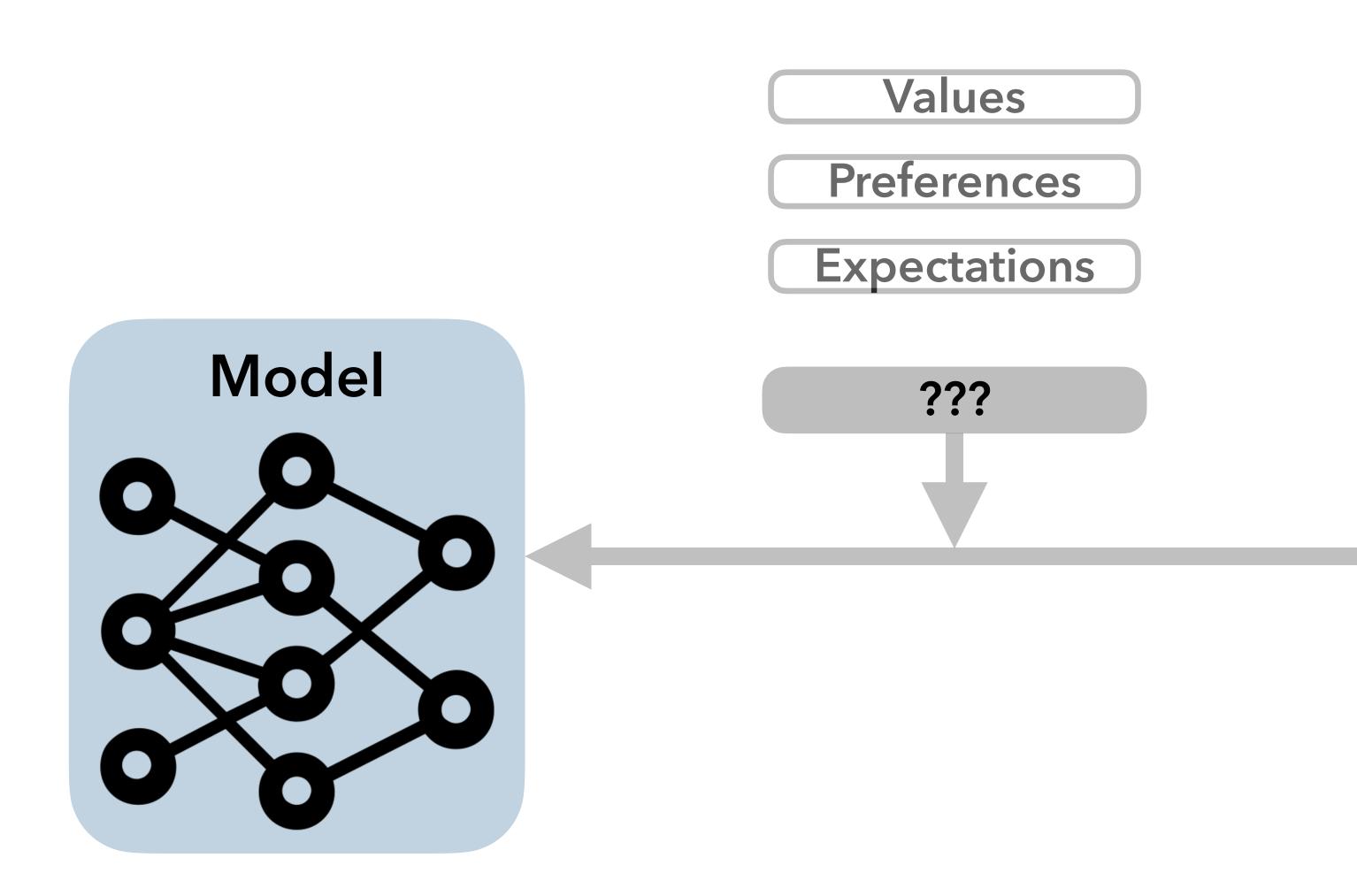
Algorithmic transparency is important but difficult

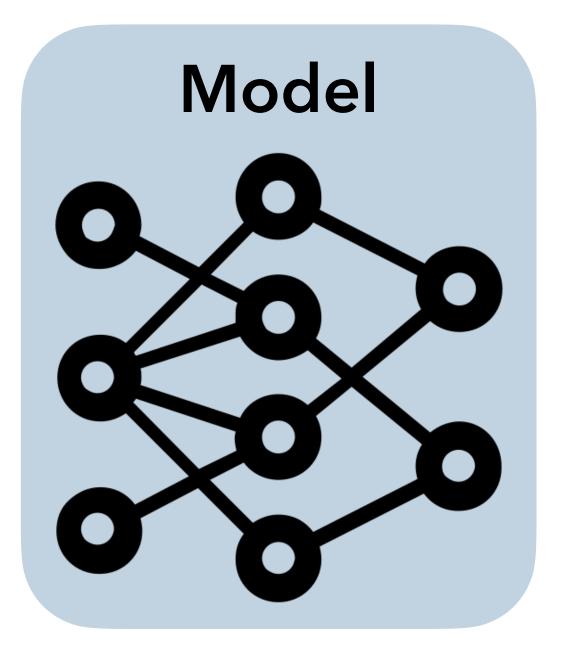
- Explanations are desirable in theory but are hard to operationalize
- Uncertainty can be treated as a form of transparency that can be used to alter stakeholder interaction with model
- We need to consider the context of transparency carefully to improve outcomes of human-machine teams

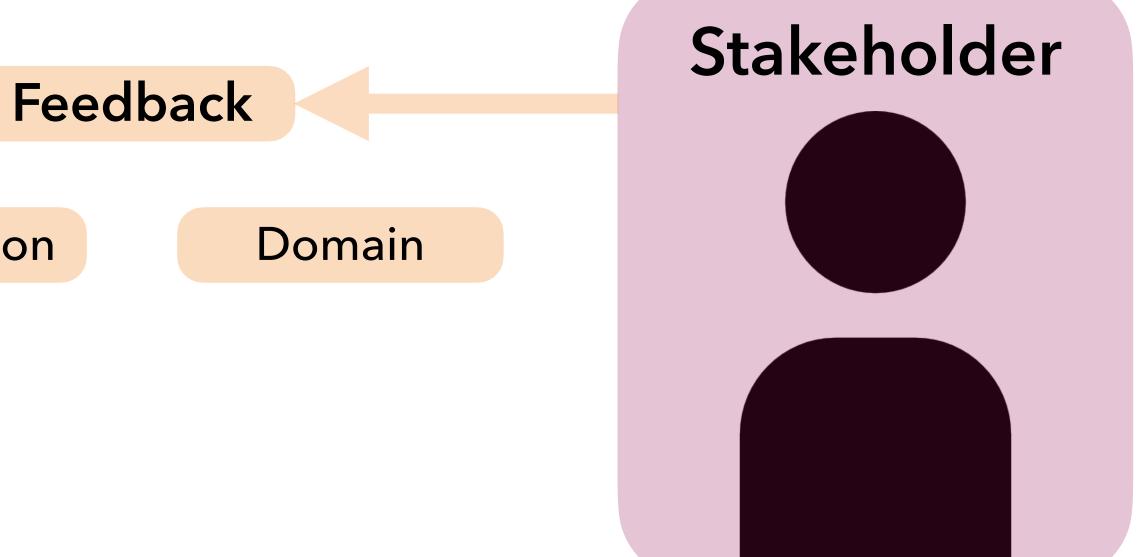
Convening is powerful tool to motivate technical and socio-technical research



Babbar, **B**, Weller. On the Utility of Prediction Sets in Human-Al Teams. IJCAI. 2022.

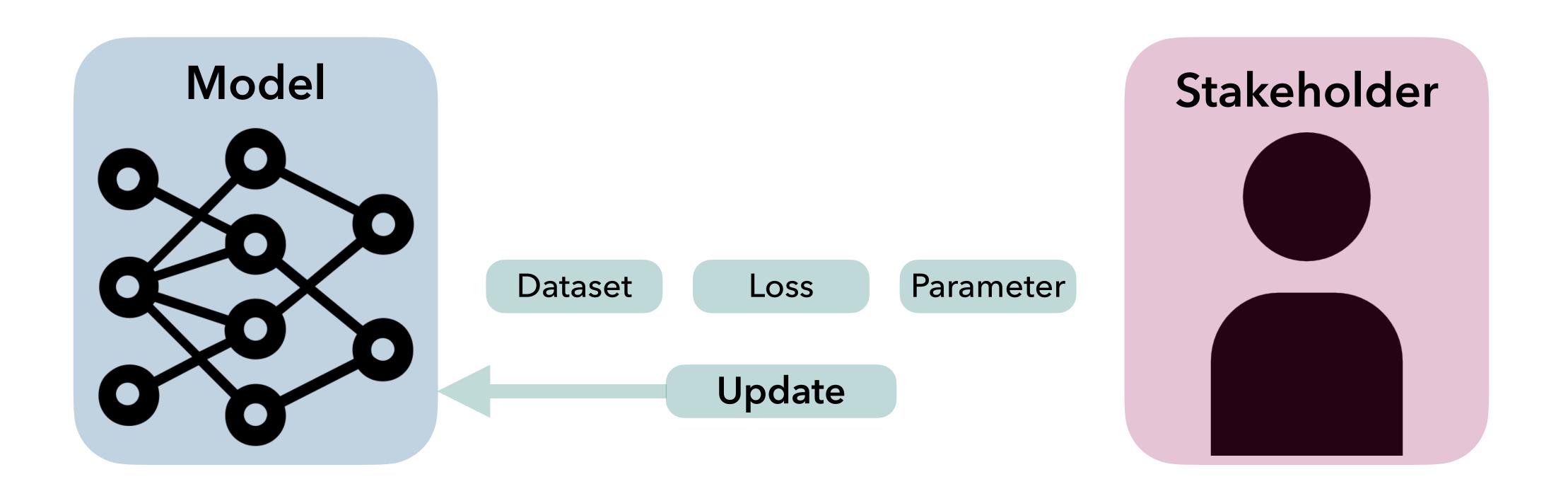




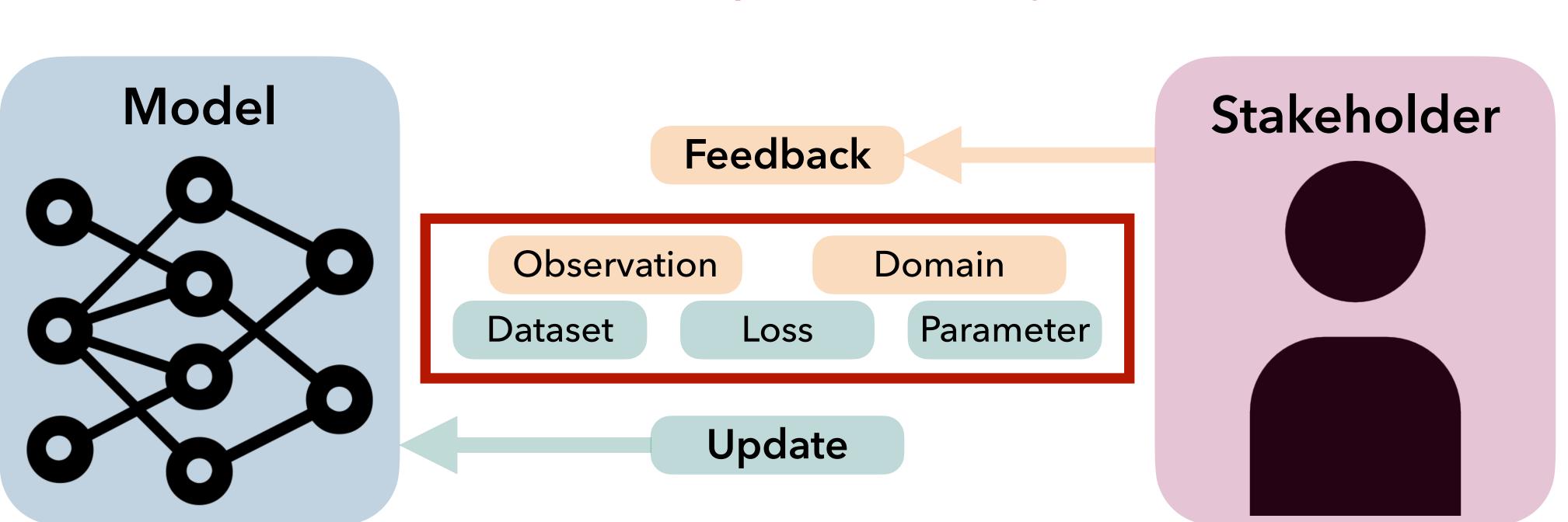


Observation

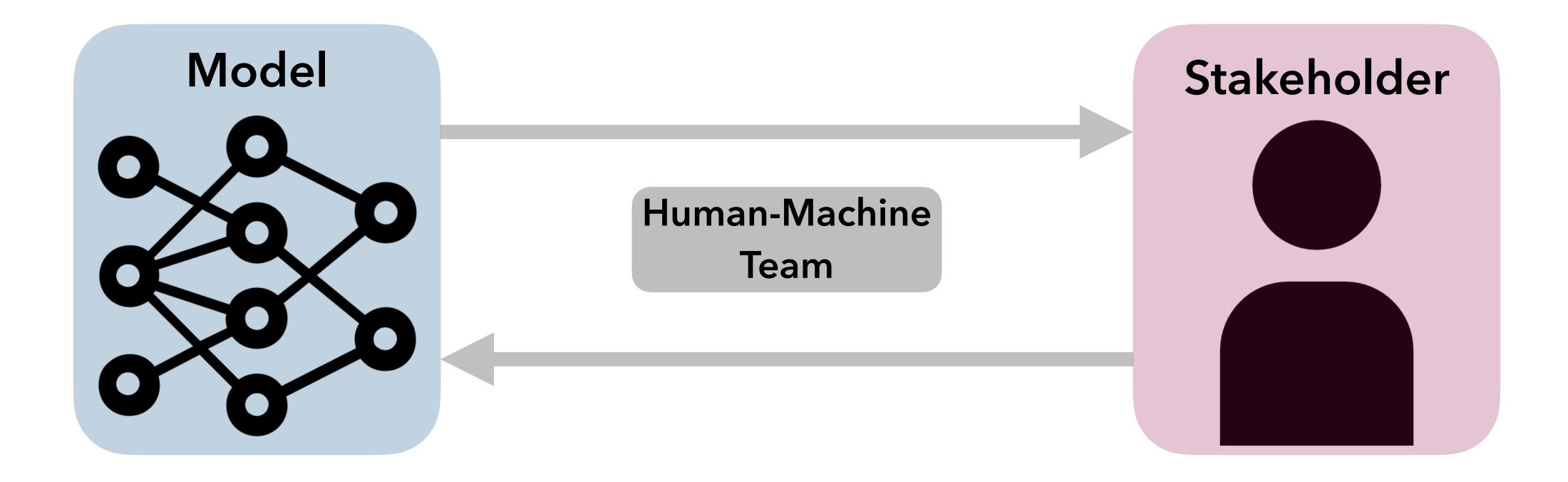
Hertwig, Erev. The description-experience gap in risky choice. Trends in Cognitive Science. 2009. Chen*, **B***, Heidari, Weller, Talwalkar. Perspectives on Incorporating Expert Feedback into Model Updates. ICML Workshop on Updatable ML. 2022.

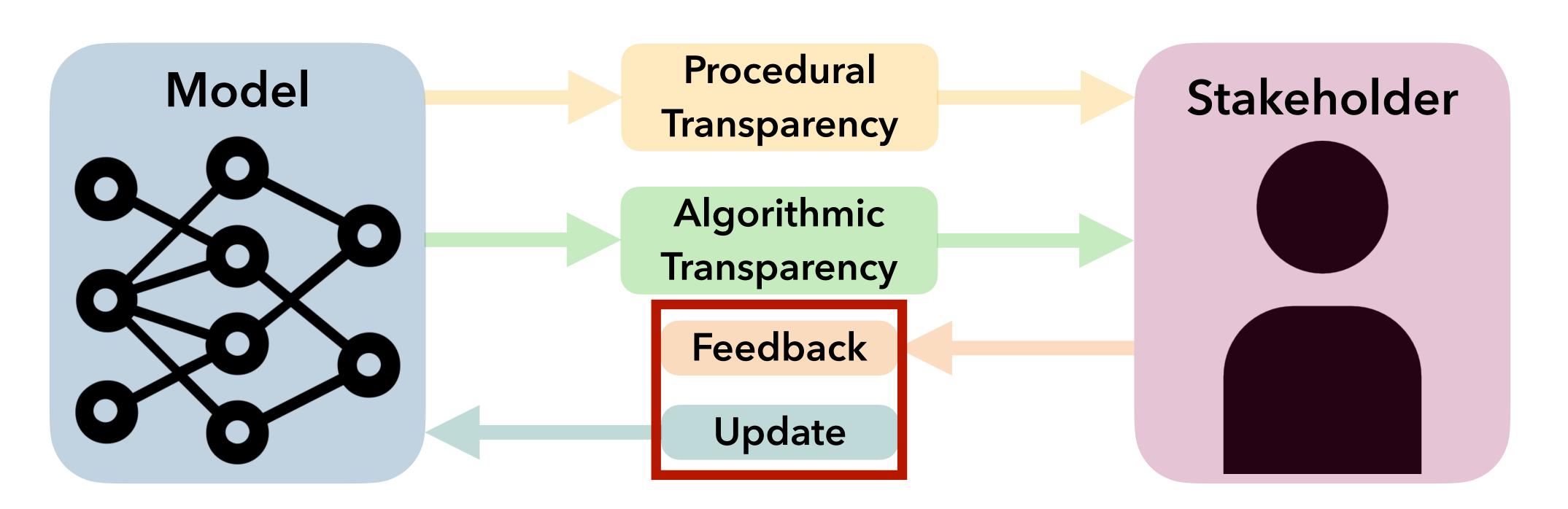


Feedback-Update Taxonomy



- Open technical questions around algorithmic transparency can be addressed with new methods and well-designed user studies
- Study the socio-technical nature and societal implications of providing transparency in specific contexts
- Conduct general research into human-machine teams





Thank you to all my collaborators, mentors, and students!

Miri Zilka Cambridge

Weiyang Liu Cambridge

Isabel Valera MPI

Mateja Jamnik Cambridge

Javier Antorán Cambridge

Katie Collins Cambridge

Varun Babbar Cambridge

Isabel Chien Cambridge

B. Schölkopf MPI

J. von Kügelgen MPI

Botty Dimanov Cambridge

Alice Xiang Sony Al

RAII

Psychology

Bradley Love UCL

Simone Schnall Cambridge

John Zerilli

Oxford

Computer Science

Adrian Weller Cambridge

José Moura CMU

Valerie Chen

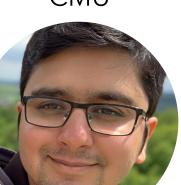
CMU

Ameet Talwalkar CMU

Hoda Heidari CMU

Joydeep Ghosh Shubham Sharma UT Austin

Dan Ley Harvard



M. Bilal Zafar Amazon

Ruchir Puri IBM

Yunfeng Zhang Twitter

Vera Liao Microsoft

Emma Kallina Cambridge

Becca Ricks Mozilla

Dorian Peters Imperial

Rune Nyrup Cambridge

Algorithmic Transparency in Machine Learning

Thank you for listening! Questions?

@umangsbhatt usb20@cam.ac.uk