

Counterfactual Accuracies for Alternative Models

Umang Bhatt, Adrian Weller, Muhammad Bilal Zafar, Krishna Gummadi

ML-IRL Workshop at ICLR 2020

About Us

Umang Bhatt

University of Cambridge

Adrian Weller

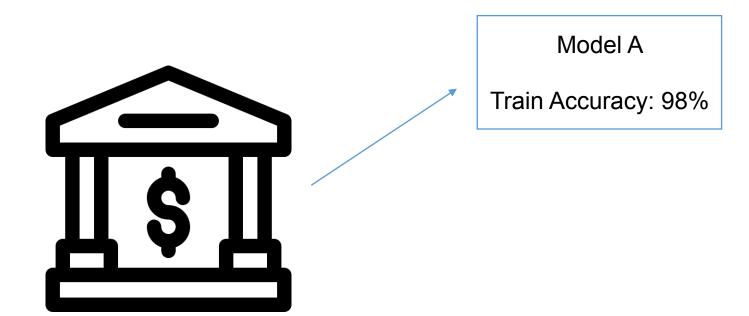
University of Cambridge The Alan Turing Institute aw665@cam.ac.uk

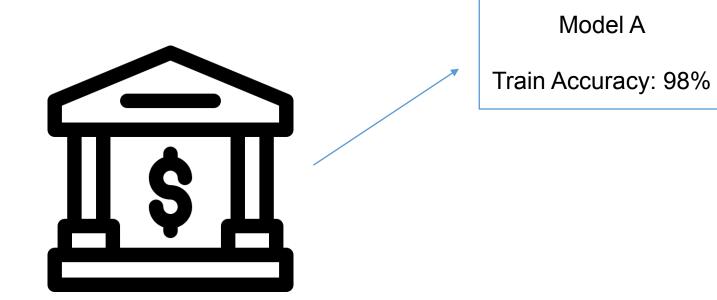
Muhammad Bilal Zafar

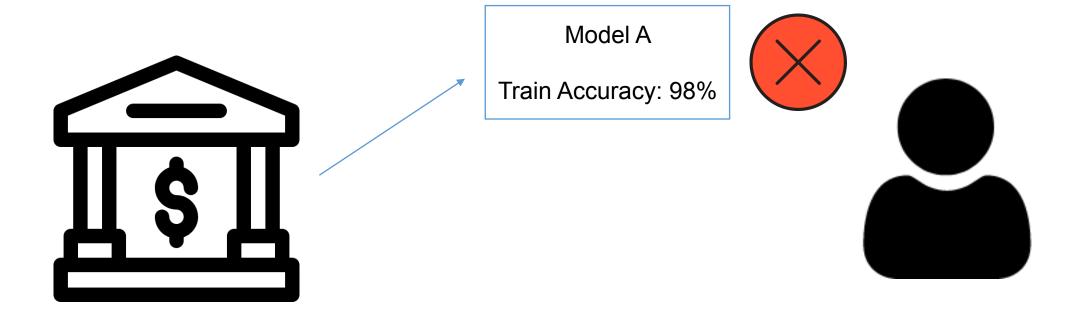
Bosch Center for AI mzafar@mpi-sws.org

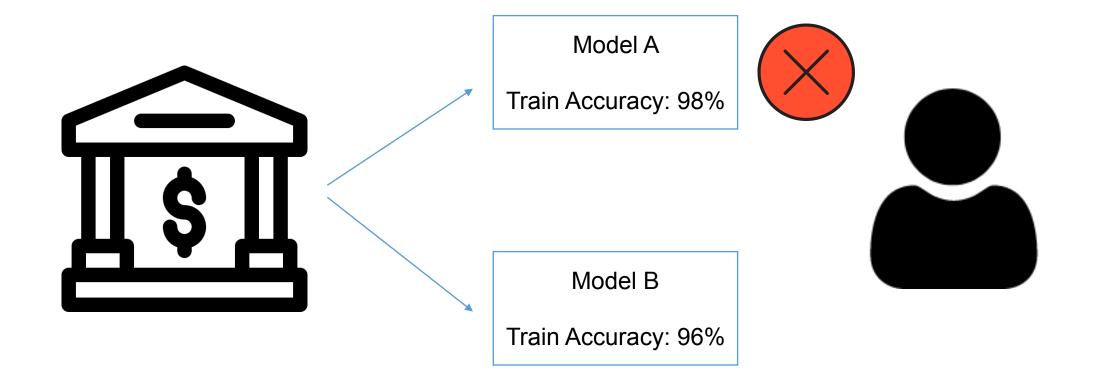
Krishna Gummadi

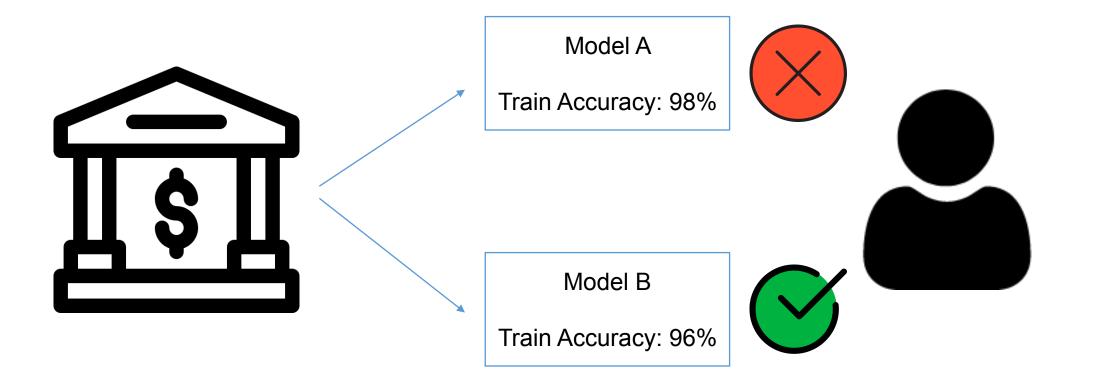
MPI-SWS gummadi@mpi-sws.org











Given a particular test point **z**, if we were to find an alternative classifier in the same model class fitted to the same training data, how much training accuracy would we have to give up so that the prediction for the test point **z** would change?

Rashomon Effect [Breiman 2001]: Multiple models may fit the training data well

Rashomon Effect [Breiman 2001]: Multiple models may fit the training data well

Rashomon Set [Fisher et al. 2019]: Set of models with near-optimal accuracy

Rashomon Effect [Breiman 2001]: Multiple models may fit the training data well

Rashomon Set [Fisher et al. 2019]: Set of models with near-optimal accuracy

Predictive Multiplicity [Marx et al. 2019]: Analyzes the difference in predictions from models in a Rashomon set

 $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$ Training Dataset ${\mathcal F}$ Family of Functions

 $\hat{R}(f) = \frac{1}{n} \sum_{i=1}^{n} \ell'\left(f(x_i), y_i\right)$ Average Loss (Empirical Risk)

Our Approach

Empirical Risk Minimization

$$f_{\mathrm{o}} = \operatorname*{arg\,min}_{f \in \mathcal{F}} \sum_{i=1}^{N} \ell\left(f(\boldsymbol{x}_{i}), y_{i}\right)$$

Our Approach

Empirical Risk Minimization

$$f_{o} = \operatorname*{arg\,min}_{f \in \mathcal{F}} \sum_{i=1}^{N} \ell\left(f(\boldsymbol{x}_{i}), y_{i}\right)$$

$$f_{\boldsymbol{z}} = \underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \sum_{i=1}^{N} \ell\left(f(\boldsymbol{x}_{i}), y_{i}\right)$$

s.t. $f_{o}(\boldsymbol{z}) \neq f_{\boldsymbol{z}}(\boldsymbol{z})$

This Work

Our Approach

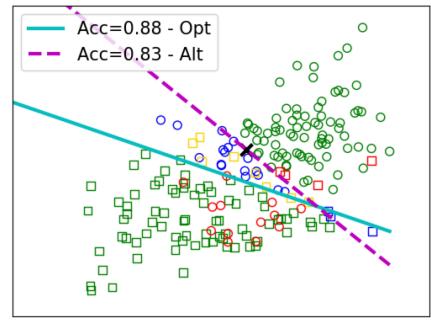
Empirical Risk Minimization

$$f_{o} = \underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \sum_{i=1}^{N} \ell\left(f(\boldsymbol{x}_{i}), y_{i}\right) \qquad \qquad f_{\boldsymbol{z}} = \underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \sum_{i=1}^{N} \ell\left(f(\boldsymbol{x}_{i}), y_{i}\right) \\ \text{s.t. } f_{o}(\boldsymbol{z}) \neq f_{\boldsymbol{z}}(\boldsymbol{z})$$

Counterfactual Accuracy: $\tilde{C}_{z} = \hat{R}(f_{z}) - \hat{R}(f_{o}) = \left(1 - \hat{R}(f_{o})\right) - \left(1 - \hat{R}(f_{z})\right)$

Some Results

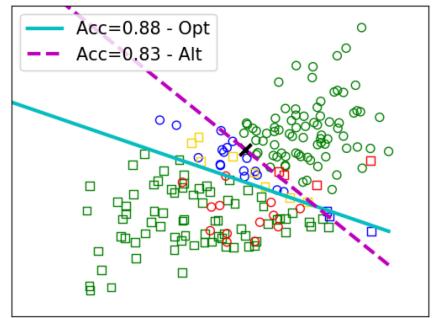
Two Overlapping Gaussians



Green: Correct in both Red: Incorrect in both Blue: Originally right, now wrong Yellow: Originally wrong, now right

Some Results

Two Overlapping Gaussians



Green: Correct in both Red: Incorrect in both Blue: Originally right, now wrong Yellow: Originally wrong, now right

Dataset	Average Counterfactual Accuracy	Average number of predicted label flips
Adult	0.667%	~225
COMPAS	1.437%	~260

• Faster computation: Moving beyond a warm start from the parameters of the old model, how can avoid recomputing the entire objective from scratch?

• Faster computation: Moving beyond a warm start from the parameters of the old model, how can avoid recomputing the entire objective from scratch?

• Experimentation: What do ML practitioners learn about their datasets from knowing this quantity for their training data?

Breiman, Leo. "Statistical modeling: The two cultures (with comments and a rejoinder by the author)." Statistical science 16.3 (2001): 199-231.

Fisher, Aaron, Cynthia Rudin, and Francesca Dominici. "All models are wrong but many are useful: Variable importance for black-box, proprietary, or misspecified prediction models, using model class reliance." arXiv preprint arXiv:1801.01489 (2018).

Marx, Charles T., Flavio du Pin Calmon, and Berk Ustun. "Predictive Multiplicity in Classification." arXiv preprint arXiv:1909.06677 (2019).