Explainable Machine Learning in Deployment

Umang Bhatt, Alice Xiang, Shubham Sharma, Adrian Weller, Ankur Taly, Yuhuan Jia, Joydeep Ghosh, Ruchir Puri, José Moura, and Peter Eckersley
Growth of Transparency Literature
Growth of Transparency Literature

Many algorithms proposed to “explain” machine learning model output
Growth of Transparency Literature

Many algorithms proposed to “explain” machine learning model output

We study how organizations use these algorithms, if at all
Our Approach
Our Approach

30 minute to 2 hour semi-structured interviews
Our Approach

30 minute to 2 hour semi-structured interviews

50 individuals from 30 organizations interviewed
Shared Language
Shared Language

- **Transparency**: Providing stakeholders with relevant information about how a model works.

- **Explainability**: Providing insights into a model’s behavior for specific datapoint(s)
Shared Language

- **Transparency**: Providing stakeholders with relevant information about how a model works.

- **Explainability**: Providing insights into a model’s behavior for specific datapoint(s)
Example Questions

• What **type of explanations** have you used (e.g., feature-based, sample-based, counterfactual, or natural language)?

• Who is the audience for the model explanation (e.g., research scientists, product managers, domain experts, or users)?

• In what context have you deployed the explanations (e.g., informing the development process, informing human decision makers about the model, or informing the end user on how actions were taken based on the model’s output)?
Example Questions

• What **type of explanations** have you used (e.g., feature-based, sample-based, counterfactual, or natural language)?

• Who is the **audience** for the model explanation (e.g., research scientists, product managers, domain experts, or users)?

• In what context have you deployed the explanations (e.g., informing the development process, informing human decision makers about the model, or informing the end user on how actions were taken based on the model’s output)?
Example Questions

• What type of explanations have you used (e.g., feature-based, sample-based, counterfactual, or natural language)?

• Who is the audience for the model explanation (e.g., research scientists, product managers, domain experts, or users)?

• In what context have you deployed the explanations (e.g., informing the development process, informing human decision makers about the model, or informing the end user on how actions were taken based on the model’s output)?
Types of Explanations
Types of Explanations

Feature Importance
Types of Explanations

Feature Importance

Sample Importance
Types of Explanations

Feature Importance

Sample Importance

Counterfactuals
Stakeholders
Stakeholders

Executives
Stakeholders

Executives Engineers
Stakeholders

Executives Engineers End Users
Stakeholders

- Executives
- Engineers
- End Users
- Regulators
Findings

1. Explainability used for **debugging** internally

2. **Goals** of explainability are not clearly defined within organizations

3. Technical **limitations** make explainability hard to deploy in real-time
Findings

1. Explainability used for **debugging** internally

2. **Goals** of explainability are not clearly defined within organizations

3. Technical **limitations** make explainability hard to deploy in real-time
Use Cases
Use Cases

1. Most use cases in finance or healthcare

2. Consumer of explanation is almost exclusively ML engineers

3. No consensus on evaluating feature-level explanations
Use Cases

1. Most use cases in finance or healthcare

2. Consumer of explanation is almost exclusively ML engineers

3. No consensus on evaluating feature-level explanations
Use Cases

1. Most use cases in finance or healthcare

2. Consumer of explanation is almost exclusively ML engineers

3. No consensus on evaluating feature-level explanations
Use Cases

1. Most use cases in finance or healthcare

2. Consumer of explanation is almost exclusively ML engineers

3. No consensus on evaluating feature-level explanations — **SHAP** is popular only due to convenience
Findings

1. Explainability used for debugging internally

2. **Goals** of explainability are not clearly defined within organizations

3. Technical **limitations** make explainability hard to deploy in real-time
Establishing Explainability Goals
Establishing Explainability Goals

1. Identify stakeholders

Who will consume the explanation?
Establishing Explainability Goals

1. Identify stakeholders
 Who will consume the explanation?

2. Engage stakeholders
 What purpose will the explanation serve?
Establishing Explainability Goals

1. Identify stakeholders
 - Who will consume the explanation?

2. Engage stakeholders
 - What purpose will the explanation serve?

3. Devise workflow
 - How will the explanation be used in practice?
Findings

1. Explainability used for **debugging** internally

2. **Goals** of explainability are not clearly defined within organizations

3. Technical **limitations** make explainability hard to deploy in real-time
Limitations

• **Spurious** correlations exposed by feature level explanations
Limitations

• **Spurious** correlations exposed by feature level explanations

• No **causal** underpinnings to the models themselves
Limitations

• Sample importance is \textit{computationally infeasible} to deploy at scale
Limitations

• Sample importance is **computationally infeasible** to deploy at scale

• **Privacy** concerns of model inversion
Findings

1. Explainability used for **debugging** internally

2. **Goals** of explainability are not clearly defined within organizations

3. Technical **limitations** make explainability hard to deploy in real-time
Explainable Machine Learning in Deployment

umang@partnershiponai.org
@umangsbhatt