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Abstract
A feature-based model explanation denotes how much each input feature contributes to a model’s output for a given data point. As the number of
proposed explanation functions grows, we lack quantitative evaluation criteria to help practitioners know when to use which explanation function.
This paper proposes quantitative evaluation criteria for feature-based explanations: low sensitivity, high faithfulness, and low complexity. We devise a
framework for aggregating explanation functions. We develop a procedure for learning an aggregate explanation function with lower complexity
and then derive a new aggregate Shapley value explanation function that minimizes sensitivity.

Evaluation Criteria
Let f be a black box predictor that maps an input x ∈ Rd to an output f(x) ∈ Y. An explanation
function g from a family of explanation functions, G, takes in a predictor f and a point of interest
x and returns importance scores g(f ,x) = φx ∈ Rd for all features. We denote D : Rd ×Rd 7→ R≥0

to be a distance metric over explanations, while ρ : Rd × Rd 7→ R≥0 denotes a distance metric over
the inputs. An evaluation criterion µ takes in f , g, and x, and outputs a scalar: µ(f , g;x).
Desideratum: Low Sensitivity. If inputs are near each other and their model outputs are similar,
then their explanations should be close to each other. Let Nr = {z ∈ Dx | ρ(x, z) ≤ r,f(x) = f(z)}
be a neighborhood of datapoints within a radius r of x.

Max Sensitivity: µM(f , g, r;x) = maxz∈Nr D(g(f ,x), g(f , z))
Average Sensitivity: µA(f , g, r;x) =

∫
z∈Nr

D(g(f ,x), g(f , z))Px(z)dz

Desideratum: High Faithfulness. The feature importance scores from g should correspond to
the important features of x for f ; as such, when we set particular features xs to a baseline value
x̄s, the change in predictor’s output should be proportional to the sum of attribution scores of
features in xs. We measure this as the correlation between the sum of the attributions of xs and
the difference in output when setting those features to a reference baseline. For a subset of indices
S ⊆ {1, 2, . . . d}, xs = {xi, i ∈ S} denotes a sub-vector of input features that partitions the input,
x = xs ∪ xc. x[xs=x̄s] denotes an input where xs is set to a reference baseline while xc remains
unchanged: x[xs=x̄s] = x̄s ∪ xc. When |S| = d, x[xs=x̄s] = x̄.

µF(f , g;x) = corr
S∈( [d]

|S|)

(∑
i∈S g(f ,x)i,f(x)− f

(
x[xs=x̄s]

))
Desideratum: Low Complexity. A complex explanation is one that uses all d features in its
explanation of which features of x are important to f . Though this explanation may be faithful to
the model (as defined above), it may be too difficult for the user to understand (especially if d is
large). We define a fractional contribution distribution, where | · | denotes absolute value:

Pg(i) = |g(f ,x)i|∑
j∈[d]

|g(f ,x)j | ; Pg = {Pg(1), . . . ,Pg(d)}

Let Pg(i) denote the fractional contribution of feature xi to the total magnitude of the attribution. If
every feature had equal attribution, the explanation would be complex even if faithful. The simplest
explanation would be concentrated on one feature. We define complexity as the entropy of Pg.

µC(f , g;x) = Ei

[
− ln(Pg)

]
= −

∑d
i=1 Pg(i) ln(Pg(i))

Algorithms for Aggregation
We can aggregate explanations from various gi
to optimize a particular evaluation criterion.
Lowering Sensitivity. Termed Aggregate Val-
uation of Antecedents (AVA), we derive an ex-
planation function that explains a data point in
terms of the explanations of its neighbors. To
obtain an explanation gAVA(f ,xtest) for a point
of interest xtest, we first find the k nearest neigh-
bors of xtest under ρ denoted by Nk(xtest,D).

Nk(xtest,D) = arg min
N⊂D,|N |=k

∑
z∈N

ρ(xtest, z)

We define gAVA(f ,xtest) = Φxtest as the expla-
nation function where:

gAVA(f ,xtest)i =
∑

z∈Nk(xtest)

gSHAP(f , z)i
ρ(xtest, z)

=
∑

z∈Nk(xtest)

φi(vz)

ρ(xtest, z)

Theorem 1. gAVA(f ,xtest) is a Shapley value
explanation.

Lowering Complexity. We devise iterative
algorithms for aggregating explanation func-
tions to obtain gagg(f ,x) with lower complexity
whilst combining m candidate explanation func-
tions Gm = {g1, . . . , gm}. We desire a gagg(f ,x)
that contains information from all candidate ex-
planations gi(f ,x) yet has entropy less than or
equal to that of each explanation gi(f ,x).

Visual examples of the two complexity lowering
aggregation algorithms: gradient-descent style
(top) and region shrinking (bottom) methods
using explanation functions g1, g2, g3

Other Aggregation Methods
Given f , Gm = {g1, . . . , gm}, µ, and a set of inputs Dx, we want to find an aggregate explanation
function gagg that satisfies µ at least as well as any gi ∈ Gm. Let h(·) represent some function that
combines m explanations into a consensus gagg = h(Gm).
Convex Combination. Suppose we have two different explanation functions g1 and g2 and have
chosen a criterion µ to evaluate a g. Consider an aggregate explanation, gagg = h(g1, g2). A potential
h(·) is a convex combination where gagg = h(g1, g2) = wg1 + (1− w)g2 = wᵀGm.
Centroid Aggregation. Another sensible candidate for h(·) to combine m explanation functions
is based on centroids with respect to some distance function D : G × G 7→ R, so that:

gagg ∈ arg min
g∈G

E
gi∈Gm

[
D(g, gi)

p
]

= arg min
g∈G

m∑
i=1

D(g, gi)
p

where p is a positive constant. Assuming real-valued attributions where G ⊆ Rd, when D is `2 and
p = 2, the aggregate explanation is the feature-wise sample mean; when D is `1 and p = 1, the
aggregate is the feature-wise sample median [1]. We could obtain rank-valued attributions by taking
any quantitative vector-valued attributions and ranking features according to their values. If D is
the Kendall-tau distance with rank-valued attributions where G ⊆ Sd (the set of permutations over
d features), then the resulting aggregation mechanism is the Kemeny-Young rule.
Future Work. We could leverage multi-objective optimization to find gagg. For example, we could
learn a less sensitive and less complex explanation function by optimizing:

gagg ∈ arg min
g∈G

E
x∈D

[
µA(f , g, r;x) + λµC(f , g;x)

]
References
[1] James O Berger. Statistical decision theory and

Bayesian analysis. Springer Science & Business Me-
dia, 2013.


