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Overview
• With the rise of deep learning, network interpretability of deep networks has emerged as a challenging problem. An information-theoretic understanding

of deep networks is particularly lacking.

• Current methods of estimating mutual information do not consider the flow between individual neurons.

• We propose a method utilizing MINE [1] to estimate the mutual information between neurons in a network. We accomplish this by removing the
redundant information within a layer from the information calculated between a layer and an individual neuron.

• We also explore how this technique can be utilized to create feature attributions to provide better insight into how the model prioritizes input features.

Information Measures
• Mutual Information (MI) is defined as:
I(X,Y ) = H(X)−H(X|Y ) and is the reduc-
tion of uncertainty in X given Y. We wish to
estimate I(Xi;Qk), the MI between 2 nodes
in a trained network.

• Since calculation of this quantity is in-
tractable, we exploit the MINE [1] estimator
which uses a statistics network Tθ to approx-
imate the following:

Î(X ,Z) = sup
θ∈Θ

EPXZ [Tθ]− log(EPX⊗PZ [e
Tθ ])

(1)
• We decompose this approximation to give us
I(Xi;Qk), where Xi is a feature of the in-
put vector and Qk is any quantity of interest.
That is, we leverage an approximation [2]:

I(Xi;Qk) = I(X ;Qk)− β
i−1∑
j=1

I(Xi;Xj) (2)

where β can be used to tune the interactive
effect of MI between features.

• The first term is referred to as the relevance
of X to Qk and the second term is called re-
dundancy, as it removes interactions between
dimensions of the input.

Approach

Since Tθ shares model parameters between the
redundancy (A) and relevance (B) components,
we derive a weaker least upper bound. To better
understand distributional interactions, we define
the following:

A = EPXQk
[Tθ]− log(EPX⊗PQk

[eTθ ])

B = EPXiXj
[Tθ]− log(EPXi⊗PXj

[eTθ ])

We combine these parameters to derive NIF:

NIF = sup
θ∈Θ

(
A− β

i−1∑
j=1

B
)
≥ Î(Xi,Qk, Tθ) (3)

Feature Attribution
• To recover a feature attribution, we find all

the possible paths between a feature of inter-
est and each of the outputs.

• Mathematically, the element Ai,j of our attri-
bution matrix A ∈ Rd×c (where d is the num-
ber of features and c is the number of classes)
can be given as:

Aij =
∑
Cj

∑
pij∈P

∏
`∈pij

I(`start, `end) (4)

where, P is the set of all directed paths from
input xi to class yj in the NIF network, and
L is the set of links on each path p ∈ P.

Experimentation
To prove the fidelity of NIF, we run experiments to extract a feature attribution to explain the
original model output and to prune the network for compression.
We conducted our experiments on the Iris and Banknote dataset.

Implications for Model Compression

• Often in neural network training, many neu-
rons learn information which is not necessary
for final prediction

• Such useless neurons can be removed as they
only lead to unnecessary computation without
affecting model accuracy

• NIF naturally enables detection of such neu-
rons from an information-theoretic standpoint
– We identify neurons that have zero informa-
tion flowing through them

• Zeroing out weights and biases of these neu-
rons does not affect classification accuracy.

Feature Attribution

• We evaluate the feature attribution provided
by NIF against current techniques.

• Via the K-S test, we observe that the raw mu-
tual information and the NIF attribution are
likely drawn from the same distribution.

Attribution K-S statistic p-value

NIF 1.0 0.011
SHAP[3] 0.75 0.107
IG[4] 0.25 0.996

Multilayer Networks

• We conducted further experiments on deeper
neural architectures.

• We observed similar behaviors in communities
and zero information neurons.

Conclusion
• We have proposed NIF, Neural Information

Flow, a new metric for measuring informa-
tion flow through deep learning models.

• Merging a dual representation of Kullback-
Leibler divergence and classical feature se-
lection literature, we find that NIF provides
insight into which information pathways are
crucial within a network.

• We show that the feature importance cap-
tured by NIF rivals prior techniques from an
information-theoretic perspective.

• NIF can also allow us to leverage fewer pa-
rameters at inference time, since we can re-
move parameters deemed useless by the NIF
without loss of accuracy.
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